

(v1.3, 31-OCT-2008) www.silistix.com
© 2008 by Silistix UK Ltd.

Describing a System Using
Connection Specification

Language (CSL)

(CHAIN
®
works 2.1.1)

Describing a System Using Connection Specification Language (CSL)

2 www.silistix.com (v1.3, 31-OCT-2008)

License

© 2008 Silistix, All Rights Reserved.

This document, including all software and software described in it, is furnished under the terms of

the CHAIN Documentation License Agreement (the "License") and may only be used or copied in

accordance with the terms of the License. The information in this document is a work in progress,

developed by Silistix, and is furnished for informational use only.

The technology disclosed herein may be protected by one or more patents, copyrights, trademarks

and/or trade secrets owned by or licensed to Silistix. Silistix reserves all rights with respect to such

technology and related materials. Any use of the protected technology and related material beyond

the terms of the License without the prior written consent of Silistix is prohibited.

This document contains material that is confidential to Silistix and its licensors. The user should

assume that all materials contained and/or referenced in this document are confidential and

proprietary unless otherwise indicated or apparent from the nature of such materials (for example,

references to publicly available forms or documents). Disclosure or use of this document or any

material contained herein, other than as expressly permitted, is prohibited without the prior written

consent of Silistix or such other party that may grant permission to use its proprietary material.

The trademarks, logos, and service marks displayed in this document are the registered and

unregistered trademarks of Silistix.

The copyright and trademarks owned by Silistix, whether registered or unregistered, may not be used

in connection with any product or service that is not owned, approved or distributed by Silistix, and

may not be used in any manner that is likely to cause customer confusion or that disparages Silistix.

Nothing contained in this document should be construed as granting by implication, estoppel, or

otherwise, any license or right to use any copyright without the express written consent of Silistix, its

licensors or a third party owner of any such trademark.

Disclaimer

Except as otherwise expressly provided, this specification and any other documentation is provided

by Silistix to users "as is" without warranty of any kind, express, implied or statutory, including but

not limited to any implied warranties of merchantability, fitness for a particular purpose and non-

infringement of third party rights.

Silistix shall not be liable for any direct, indirect, incidental, special or consequential damages of any

kind or nature whatsoever (including, without limitation, any damages arising from loss of use or lost

business, revenue, profits, data or goodwill) arising in connection with any infringement claims by

third parties or the specification, whether in an action in contract, tort, strict liability, negligence, or

any other theory, even if advised of the possibility of such damages.

 Describing a System Using Connection Specification Language (CSL)

(v1.3, 31-OCT-2008) www.silistix.com 3

Table of Contents

DESCRIBING A SYSTEM USING CONNECTION SPECIFICATION LANGUAGE (CSL™)
 ... 5

Introduction .. 5

Include Target Technology Library .. 5

System-Level Description ... 6

Endpoints ... 7

Adapter Interface Protocol ... 7

Port and Endpoint Basics .. 9

initiator Declaration .. 10

target Declaration... 10

Address and Data Widths .. 10

peak Bandwidth ... 11

Burst Size .. 11

outstanding Transactions ... 11

response Delays ... 12

Address Spaces ... 12

Declaring an Address Map and Target Ranges ... 12

Referencing an Address Map in an Initiator Declaration ... 12

Referencing an Address Range in a Target Declaration ... 13

Defining Connections between Endpoints .. 13

Modes of Operation ... 13

Different Directions, Different Requirements ... 13

Switching Latency .. 16

Network Roundtrip Latency ... 16

System Roundtrip Latency ... 17

Setting Optimization Priorities .. 17

Over-Provisioning and Dealing with Uncertainty .. 18

Area and Power Statements .. 18

area Statement ... 18

power Statement .. 19

Example CSL File ... 20

First Placement Estimator (FPE) Constructs ... 24

Describing Physical Attributes ... 25

area .. 25

pad_ring ... 26

aspect_ratio ... 26

block_type ... 27

footprint ... 28

Describing a System Using Connection Specification Language (CSL)

4 www.silistix.com (v1.3, 31-OCT-2008)

endpoint_area_utilization .. 28

halo .. 28

elasticity_threshold ... 29

Controlling Block Placement and Floor Planning ... 30

Forming Relationships ... 30

pin .. 30

pad ... 30

net .. 31

Pin, Pad, Net Connection Examples .. 31

Relative Coordinates ... 34

Absolute Coordinates .. 35

Example CSL Design (with FPE constructs) ... 35

General Design Methodology ... 39

Naming/Identifier Conventions ... 40

Number Conventions ... 41

Revision History ... 42

Feedback .. 42

Disclaimers ... 42

(v1.3, 31-OCT-2008) www.silistix.com 5
© 2007–2008 by Silistix UK Ltd.

Describing a System Using

Connection Specification Language (CSL™)

Introduction

This guide describes how to use the Silistix Connection Specification Language (CSL) to define

communication paths between major hardware blocks in your system. The simple, top-down design

example introduces key CSL language constructs and concepts along the way. The CSL syntax is

relatively easy to learn, especially for those with any prior programming experience.

If you are already familiar with the general CSL language concepts, see General Design

Methodology on page 39 for a convenient reference summary.

After describing your system in CSL, you can quickly evaluate your system, analyze design trade-

offs, and accurately estimate area, performance, and power using the easy-to-use Silistix

CHAINarchitect™ software.
technology library

Include Target Technology Library

A key component in the Silistix technology is a library of targeted, pre-designed, pre-characterized,

and pre-verified hard macro functions that implement the proven CHAIN Network-on-Chip (NoC).

These macros, packaged as a library, are specific to a semiconductor fabrication vendor and a

process technology node.

Because these library functions are already mapped to the targeted process technology, the Silistix

CHAINworks software provides predictable timing, power, and area estimates.

Table 1 lists the “generic” technology libraries available as of July 2008. Other libraries have been

specifically developed for proprietary “captive” semiconductor facilities at major semiconductor and

systems companies.

Table 1: Silistix Target Technology Libraries (July 2008)

Fabrication
Vendor

Process
Node Process

Library Vendor/
IP Library Library Name

— 90 nm — Silistix Generic Silistix_90nm_Generic

TSMC

130 nm 130G Artisan Sage TSMC130G_Artisan_Sage

90 nm 90G Artisan Sage TSMC90G_Artisan_Sage

65 nm 65G Artisan Advantage TSMC65G_Artisan_Advantage

UMC 130 nm 130E Artisan Metro UMC130E_Artisan_Metro

http://www.silistix.com

Describing a System Using Connection Specification Language (CSL)

6 www.silistix.com (v1.3, 31-OCT-2008)

System-Level Description

Figure 1 represents a top-level block diagram of a typical system-on-a-chip (SoC) application. The

system consists of multiple clock domains, each highlighted in a different color. Each domain is

controlled by an independent clock input, each operating at its own inherent frequency.

Embedded within each domain is one or more hardware block such as CPUs, DSPs, memory, etc. In

the CSL language, each of these blocks represents a potential endpoint, when connected together

at the chip level using the CHAIN network.

Figure 1: System-level block diagram

endpoint

endpoint

endpointendpoint

endpoint

domain

domain

domain

system

Figure 2 demonstrates these CSL system-level language concepts.

 The library statement declares that the target technology; in this case, the Silistix generic

library. Table 1 lists the other available options.

 The system statement declares the name of the system.

 Each domain statement declares the name of the individual clock domain and specifies the

native operating frequency in MHz.

 Describing a System Using Connection Specification Language (CSL)

(v1.3, 31-OCT-2008) www.silistix.com 7

Figure 2: CSL Code Snippet Demonstrating #include, system, and domain
/**
** CSL keywords and concepts demonstrated below:
** library
** system
** domain
** comments, both single- and multiple-line
**/

// Target technology library
library Silistix_90nm_Generic ;

system my_system
{
 domain cpu_domain (400 MHz)

{
 ... (see Figure 3)
} // end cpu_domain

domain memory_domain (133 MHz)
{
 ...
} // end memory_domain

domain communications_domain (155.5 MHz)
{
 ...
} // communications_domain

}

Endpoints

An endpoint is a functional block within a clock domain that communicates to other endpoints in

the system, either within the same clock domain or to endpoints in other clock domains. For each

endpoint, describe the fundamental characteristics of the connection. Figure 3 provides an example.

Adapter Interface Protocol

Within a domain, each connection endpoint uses a local or native interface protocol, as illustrated in

Figure 4. For example, a wide variety of IP functions use one of the ARM AMBA interface

protocols (AXI, AHB, APB) while others might employ the Open Core Protocol (OCP).

The Silistix library contains adapter blocks that connect directly to the Silistix network. The IP

block converses directly with other endpoints in the system using its native protocol. The adapter

layer converts the protocol to Silistix network packets via a gateway.

Similarly, at other endpoints on the network, other adapters connect the Silistix network to other IP

blocks, each supporting their own native protocol. In Figure 4, one IP block, using the ARM AXI

bus protocol communicates via the Silistix network to another IP block that uses the Open Core

Protocol (OCP).

The Silistix protocol adapter both connects an IP block to the Silistix network and provides protocol

translation between endpoints on the network.

Describing a System Using Connection Specification Language (CSL)

8 www.silistix.com (v1.3, 31-OCT-2008)

Figure 3: Endpoint Code Snippet (expands concepts in Figure 2)
/**
** CSL keywords and concepts demonstrated below:
** protocol, initiator, target
** address, data, bits, bytes
** peak, nominal, burstsize, MBs, Mbs, GBs, Gbs
** address map, address range
** ..outstanding, write response, read response
** comments, both single- and multiple-line
**/
domain cpu_domain (400 MHz) { // from Figure 2
 CPU_endpoint {
 protocol = "AXI"; // See Table 2 for options

 initiator CPU_initiator {
 address = 32 bits;
 data = 32 bits;
 peak = 1600 MBs; // only if less than theoretical
 burstsize = 32 bytes;
 address_map = CPU_address;
 outstanding = 8;
 write_response = 15 ns;
 read_response = 30 ns;
 } //end CPU_initiator

 target CPU_mailbox {
 address = 4 bits;
 data = 16 bits;
 burstsize = 16 bytes;
 address_range = COMM_address.CPU_mailbox;
 } // end CPU_mailbox target

 } // end CPU_endpoint
} // end domain

Figure 4: Protocol Adaptor Connects an Endpoint to the Silistix Network

Custom Logic or

3
rd

-party

Intellectual

Property (IP)

Block A
d

a
p

te
r

G
a

te
w

a
y

G
a

te
w

a
y

A
d

a
p

te
r Custom Logic or

3
rd

-party

Intellectual

Property (IP)

Block

To other enpoints

To other enpoints

To other enpoints

Endpoint

Endpoint

Interface protocol

Silistix Transport Layer

“AXI”

“OCP”

 Describing a System Using Connection Specification Language (CSL)

(v1.3, 31-OCT-2008) www.silistix.com 9

For each endpoint, declare the native bus protocol used locally. The currently-supported protocols

and adapters are listed in Table 2. Figure 3 provides a syntax example. In the example, the CPU
endpoint includes both an initiator and a target. The endpoint uses an AMBA AHB interface

protocol. The initiator sends addresses using its own address map. The CPU’s target interface

responds to addresses from a different endpoint.

Table 2: Supported Adapter Interface Protocols

Protocol Name Description

CGP Chain Gateway Protocol. Direct access onto the CHAIN network.

AHB AMBA High-speed Bus

APB AMBA Peripheral Bus. Only target endpoints are supported.

AXI AMBA AXI Bus

OCP Open Core Protocol

Port and Endpoint Basics

An endpoint supports one or more communication ports. Each port is an initiator, a target,

or both. Figure 5 illustrates the role of both initiator and target within a transaction.
command

An initiator, as the name implies, begins and controls a transaction with a target endpoint.

Typically, a transaction involves sending addresses or commands to the target endpoint. A

transaction’s command propagates from the initiator to the target over the command path.
response

A target responds to the transaction by decoding the address and command presented by the

initiator and then either sends data back to the initiator or accepts data from the initiator. The

communication transfer from the target back to the initiator, over the response path, completes the

transaction. The target responds to an initiator’s command either by returning read data or

acknowledging a write operation.

Figure 5: Initiator and Target in a Transaction

initiator target

Address

Data

Decode
Range

a) An initiator begins a transaction by sending a command on the

Address and Data bus.

initiator target

Address

Data/Response

Decode
Range

b) If the transaction is to its decoded address range, the target responds

by sending or accepting Data to/from the initiator.

Describing a System Using Connection Specification Language (CSL)

10 www.silistix.com (v1.3, 31-OCT-2008)

initiator Declaration

An initiator declaration, depending on the adaptor protocol, may use the following fields. Specific

protocol adapters support additional options.

 A name or identifier

 The address port width

 The data port width

 The address_map that the initiator uses to reference the attached targets

 Optionally, if peak transfer rate supported by the IP port is lower than the theoretical peak

bandwidth (frequency × data width), then specify the port’s peak transfer rate.

 Optionally, the maximum data burstsize

 Optionally, the maximum number of outstanding transactions allowed between operations

 Optionally, the response delay of the initiator between transactions

 Specify any protocol-specific attributes required for the interface. Consult the CHAIN Network

Adapter User Guide for more information.

target Declaration

 A target declaration, depending on the adaptor protocol, may use the following fields. Specific

protocol adapters support additional options.

 A name or identifier

 The address port width

 The data port width

 The address address_range within an address map, to which the target responds

 Optionally, if peak transfer rate supported by the IP interface is lower than the theoretical peak

bandwidth (frequency × data width), then specify the interface peak transfer rate.

 Optionally, the maximum data burstsize

 Optionally, the response time of the target to an initiator command

 Specify any protocol-specific attributes required for the interface. Consult the CHAIN Network

Adapter User Guide for more information.
address port width
data port width

Address and Data Widths

For each endpoint, define the width of the address port and the data port. This requirement

applies to both initiators and targets.

Define the address and data port width as bits. Figure 3 provides an example. The address

port requires enough bits to cover the specified address range, not the maximum address range

supported by IP block contained within the endpoint.

The data port width is the maximum width of any individual data transfer.

Depending on the interface protocol used in the endpoint, there may be additional limitations on the

data and address width. For example, the data width for an AMBA APB interface must be 8, 16, or

32 bits wide. Similarly, the APB address bus width must be a multiple of 8. The CHAINarchitect

 Describing a System Using Connection Specification Language (CSL)

(v1.3, 31-OCT-2008) www.silistix.com 11

software reports any mismatch between the requested address or data width and those supported by

the interface protocol.
peak transfer rate

peak Bandwidth

The optional peak bandwidth for an endpoint is specified using a number of bits or bytes per

second. Table 3 lists the units required when specified bandwidth. If the peak bandwidth is not

specified, then the CSL compiler calculates the peak bandwidth from the connections to the port

(frequency × data width). Consequently, the peak transfer rate need only be specified if the endpoint

is not capable of carrying the theoretical peak bandwidth to and from the port (frequency × data

width).

i

The bandwidth units are case sensitive. Lower-case ‘b’ represents bit; upper-case ‘B’

represents byte.

If the peak transfer rate for the endpoint port is specified in the CSL, CHAINarchitect ensures that

the combined network transfer rate is less than the specified limit. If the calculated network traffic is

greater than the specified peak transfer rate, then CHAINarchitect issues an error.

Table 3: CSL Bandwidth Units

Unit Description

Mbs Megabits per second. 1M = 1024K = 1,048,576 bits per second.

MBs MegaBytes per second. 1M = 1024K = 1,048,576 bytes per second.

Gbs Gigabits per second. 1G = 1024M = 1,048,576K = 1,073,741,824 bits per second.

GBs
GigaBytes per second. 1G = 1024M = 1,048,576K = 1,073,741,824 bytes per
second.

burst size
burstsize

Burst Size

The burstsize specifies the size of the longest transaction to be supported by the endpoint,

measured in either bits or bytes.
outstanding

outstanding Transactions

The outstanding declaration defines the maximum number of transactions that can be in flight

between operations. Essentially, this defines how many transactions can be in the network before

requiring acknowledgement. By default, this set to 1. The AHB Adapter Interface Protocol, for

example, only supports a single outstanding transaction. Consult the adapter documentation for

additional information.

Describing a System Using Connection Specification Language (CSL)

12 www.silistix.com (v1.3, 31-OCT-2008)

response

write_response
read_response

response Delays

The response declaration defines how the initiator or target endpoint responds to read and write

transactions. The CSL Compiler software uses the defined response value to calculate the system

roundtrip latency and bandwidth.

The definitions for write and read responses vary between initiator and target, as shown in Table 4.

Table 4: Write and Read Response Definitions for Initiator and Target Endpoints

Declaration Initiator Target

write_response Turnaround time between
write transactions

The delay to return a write
response

read_response Turnaround time between
read transactions

The delay to return read data

Address Spaces

Each initiator has a defined address_map. The address map describes the address decoding to the

various targets connected to the initiator. Each decoded target address is specified as an

address_range within the address map, as shown in Figure 6.

Each address range has a unique name within the address map, plus a starting and ending byte

address. Ranges within an address map cannot overlap, although a target can respond to multiple

address ranges, as shown in Figure 7.
address_map
address_range

Declaring an Address Map and Target Ranges

The address map and range must be declared before it is referenced in an endpoint declaration, as

shown in Figure 6.

Figure 6: CSL Code Snippet Demonstrating address map and range
/**
** CSL keywords and concepts demonstrated below:
** address map
** address range
**/
system my_system
{
 // address map for the CPU (see Figure 14)
 address_map CPU_address
 {
 range comm_mailbox 0x0000000 .. 0x00001ff;
 range external_sdram 0x1000000 .. 0x1ffffff;
 }

 domain cpu_domain (400 MHz)
 {
 ...

Referencing an Address Map in an Initiator Declaration

An address_map is required for each initiator. Essentially, the address map represents the

initiator’s view of the system. All initiators in a system can share a single, common address map or

each initiator can have its own independent, locally-referenced address map. However, an initiator

can only have one address map.

For an example, see the address_map declaration for the CPU_endpoint initiator in Figure 3.

 Describing a System Using Connection Specification Language (CSL)

(v1.3, 31-OCT-2008) www.silistix.com 13

Referencing an Address Range in a Target Declaration

As highlighted in Figure 7, a target can respond to a single address range, multiple address ranges,

and even multiple address ranges from different address maps. If declaring multiple target address

ranges, enclose the comma-separated list with braces or curly brackets ({, }). Each

address_range reference has the following form.

 <address_map_name>.<address_range_name>

Figure 7: Example Target Address Map Reference
// example of single target address range
 target CPU_mailbox {
 ...
 address_range = COMM_address.CPU_mailbox;
 } // end CPU_mailbox target definition

// example of multiple target address ranges
 target SDRAM_target {
 ...
 address_range = {CPU_address.external_sdram,
 COMM_address.external_sdram};
 } // end SDRAM_target definition

Defining Connections between Endpoints

After defining the system, clock domains, endpoints, and initiator and target endpoints, then specify

the connections between initiators and targets. To specify the connections, answer the following

questions about your system.

 Which initiators and targets actually communicate in the system?

 How do the communications requirements change during different modes of operation?

 For each initiator-target pair, what are the roundtrip bandwidth and latency requirements when

the initiator sends traffic to the target (initiator  target)?

 For each initiator-target pair, what are the bandwidth and latency requirements when the

initiator receives traffic from the target (initiator  target)?

Modes of Operation

Virtually all SoCs have inherent modes of operation. For example, many SoCs have a reset mode, a

low power mode, and a high performance mode. Some designs may have dozens of operating

modes. Within a CSL file, use a separate mode statement to specify the bandwidth and latency

requirements for each exclusive operating mode. CHAINarchitect and CSL Compiler leverage this

information to create a properly-provisioned network.

Figure 8 shows an example of how to declare a mode and the connections within each mode.

Different Directions, Different Requirements

The bandwidth and latency requirements for a connection are typically directional.

In CSL descriptions, the path from initiator  target is typically a completely separate network path

than the initiator  target path. This split network architecture offers several advantages; each path

has different topologies and consequently different bandwidth and latency characteristics.

 The initiator  target command path need not be idle while waiting on the response of a

previous transaction.

Describing a System Using Connection Specification Language (CSL)

14 www.silistix.com (v1.3, 31-OCT-2008)

 The topology of the two networks can be very different, each optimized for its bandwidth and

latency requirements. Typically, the initiator  target path and the initiator  target paths are

very different from one another. Optimizing each separately often saves silicon area, power, and

likely wire congestion as well.

The CSL language uses five connection operators, shown in Table 5. Two operators define roundtrip

network paths. The remaining three operators specify unidirectional connections. The source and

destination of the connection are specified in the form

<endpoint_name>.<initiator_name> and <endpoint_name>.<target_name>.

Table 5: CSL Connection Operators

Connection
Type

Connection
Operator

Specified
Path

Function

Roundtrip

=>

Figure 10

Specifies roundtrip connection from an initiator, to a
target, and write or read response from the target
back to the initiator, including the write or read
response delay of the target.

<=

Specifies roundtrip connection from a target, to an
initiator, and write or read response from the target
back to the initiator, any specified separation between
initiator transactions.

Uni-
directional

(not
recommended)

->

Figure 9

Specifies connection from an initiator to a target

<- Specifies connection from a target back to an initiator

<->
Specifies symmetric connections between initiator and
target.

Roundtrip Connection Operators

In most applications, connections are specified using System Roundtrip Latency and bandwidth.

The => operator specifies roundtrip connections originating from the initiator to the target, including

target response time. This operation is typically a write operation. The <= operator specifies

roundtrip connections from the target to the initiator, including any initiator delays between

transactions. This operation is typically a read operation.

Unidirectional Connection Operators

Unidirectional connections are also allowed, but are not recommended except for specific advanced

application cases. A unidirectional connection operator specifies the Switching Latency and

bandwidth in a single direction between the two endpoints.

A third operator, not generally recommended, defines symmetric connections between the initiator

and the target.

 Describing a System Using Connection Specification Language (CSL)

(v1.3, 31-OCT-2008) www.silistix.com 15

Figure 8: Mode and Connections Code Snippet (expands concepts in Figure 2 and Figure 3)
/**
** CSL keywords and concepts demonstrated below:
** ..mode statement
** endpoint.initiator and endpoint.target syntax
** connections from initiator to target =>)
** connections back to initiator from target (<=)
** bandwidth and latency specifications
**/
domain cpu_domain (400 MHz) {
 ...
}

mode high_speed {
 // Define path from CPU to SDRAM
 CPU.CPU_initiator => SDRAM.SDRAM_target
 (bandwidth=133 MBs, latency=90 ns);

 // Define path to CPU from SDRAM
 CPU.CPU_initiator <= SDRAM.SDRAM_target
 (bandwidth=333 MBs);
 ...
} // end high_speed mode

mode low_power {
 // Define path from CPU to SDRAM
 CPU.CPU_initiator => SDRAM.SDRAM_target
 (bandwidth=10 MBs);

 // Define path to CPU from SDRAM
 CPU.CPU_initiator <= SDRAM.SDRAM_target
 (bandwidth=10 MBs);
 ...
} // end low_power mode

CSL Example: Roundtrip Connections

In the example system illustrated in Figure 14, the CPU fetches code from an external SDRAM

memory. Consequently, the CPU  SDRAM path has significantly higher bandwidth requirements

than the CPU  SDRAM path. Figure 8 provides a code snippet demonstrating how these

connections are specified.

In CSL, bandwidth has the usual definition – the amount of data transferred over a defined time

period. The CSL bandwidth units are listed in Table 3 on page 11.

Latency is a critical architectural parameter that can be very difficult to manage with legacy bus

architectures. In the CSL description, the specified latency is the maximum acceptable System

Roundtrip Latency. The system roundtrip latency includes the Silistix Network Roundtrip Latency

plus any specified response Delays. The CSL connection specification defines the maximum

acceptable system roundtrip latency. The CHAINarchitect software reports both the network and

system roundtrip latency values as applicable.

Describing a System Using Connection Specification Language (CSL)

16 www.silistix.com (v1.3, 31-OCT-2008)

Switching Latency

As shown in Figure 9, switching latency is the total network flight time in a single direction.

Switching latency is a fundamental component of the Network Roundtrip Latency and the System

Roundtrip Latency. The switching latency includes the time to …

 convert from the interface protocol of the initiator IP block

 serialize the packet

 transport the package over the Silistix network

 de-serialize the packet

 convert the packet to the interface protocol used on the target IP block.

The switching latency depends on the traffic direction; it is not the total roundtrip time.

Figure 9: Switching Latency is Total Network Flight Time in a Direction

Custom Logic or

3
rd

-party

Intellectual

Property (IP)

Block

A
d

a
p

te
r

G
a

te
w

a
y

G
a

te
w

a
y

A
d

a
p

te
r

Custom Logic or

3
rd

-party

Intellectual

Property (IP)

Block

To other enpoints

To other enpoints

To other enpoints

Endpoint

Endpoint
“AXI”

“OCP”

Packetization
• Protocol conversion
• Serialization

De-packetization
• De-serialization
• Protocol

conversion

Network Roundtrip Latency

Network roundtrip latency is the sum of the command path Switching Latency and the response path

Switching Latency over the Silistix network, as shown in Figure 10. Because the connection from

the initiator to the target is specified separately from the connection from the target back to the

initiator, both paths are optimized independently and may have very different network paths.

The network roundtrip latency is the total of the command and response paths, but does not include

the unpredictable delays incurred within the initiator or target IP. The network roundtrip latency is

highly predictable using the Silistix CHAINarchitect software. The resulting Silistix network is pre-

implemented, with portions built using pre-characterized hard IP blocks. Consequently, the Silistix

CHAINarchitect software provides highly-accurate timing information.

However, these IP delays can be specified by defining the write_response and

read_response delays for the initiator and target ports.

 Describing a System Using Connection Specification Language (CSL)

(v1.3, 31-OCT-2008) www.silistix.com 17

Figure 10: Network and System Roundtrip Latency

Custom Logic or

3
rd

-party

Intellectual

Property (IP)

Block

Custom Logic or

3
rd

-party

Intellectual

Property (IP)

Block

Initiator

Target

G
a

te
w

a
y

A
d

a
p

te
r

G
a

te
w

a
y

A
d

a
p

te
r

A
d

a
p

te
r

G
a

te
w

a
y

A
d

a
p

te
r

G
a

te
w

a
y

Re
sp
on
se
 d
el
ay

Command Path

Response Path

Command Path network latency
Response Path network latency+
Network Roundtrip Latency

Network Roundtrip Latency
Response delay+
System Roundtrip Latency

Packetization
• Protocol conversion
• Serialization

De-packetization
• De-serialization
• Protocol

conversion

System Roundtrip Latency

As shown in Figure 10, system roundtrip latency includes the Network Roundtrip Latency plus any

specified write_response or read_response delay. The CHAINarchitect software easily

predicts the Silistix network roundtrip latency. However, any delays incurred within the initiator or

target IP blocks must be specified in the CSL file because CHAINarchitect cannot predict these

delays.

Setting Optimization Priorities

CSL allows you to set relative latency, power, and area priorities for later processing by the

CHAINworks software tools. This capability helps achieve a satisfactory balance between these

often-conflicting design requirements. As shown in Figure 11, set the optimization level to ‘1’ for

the highest-priority requirement and ‘3’ for the lowest-priority requirement.

Optimization can be set for the entire system or for specific connections.

Figure 11: CSL Code Snippet Demonstrating optimize
/**
** CSL keywords and concepts demonstrated below:
** optimize.latency, area, and power syntax
**/
 // set optimization priority (1=highest, 3=lowest)
 optimize_area=1;
 optimize_latency=2;
 optimize_power=3;

Describing a System Using Connection Specification Language (CSL)

18 www.silistix.com (v1.3, 31-OCT-2008)

Over-Provisioning and Dealing with Uncertainty

In some systems, it may be difficult to accurately specify bandwidth and latency requirements. The

CSL language allows you to easily over provision requirements using a

utilization_threshold setting.

By default, threshold is set to 1, meaning that the CHAINworks software will build networks that

can approach the full specified limits. For example, if a particular latency setting is set to 7 ns, then

CHAINworks will build connections with latency right up to the limit. Setting threshold to a lower

number over-provisions the actual bandwidth and latency limits as shown in Equation 1 and

Equation 2. For example, setting utilization_threshold = 0.8 reduces a specified 7 ns

latency to 0.8 × 7 ns = 5.6 ns.

Equation 1

Equation 2

The CSL code snippet in Figure 12 shows how to set the utilization_threshold.

Figure 12: CSL Code Snippet Demonstrating threshold
/**
** CSL keywords and concepts demonstrated below:
** utilization_threshold
**/
 utilization_threshold = 0.6; // low confidence in limits
 CPU.CPU_initiator -> SDRAM.SDRAM_target
 (bandwidth=266 MBs, latency=8.5 ns);
 ...
 utilization_threshold = 1.0; // high confidence in limits
 COMM.communications_initiator -> CPU.CPU_mailbox
 (bandwidth=2 MBs, latency=50 ns);

An alternate interpretation of the threshold specification is to view it as a confidence level. If you

are confident of the system’s bandwidth and latency limits, set utilization_threshold high

(0.8 to 1.0). If confidence is lower, set utilization_threshold to 0.6 to 0.8.

The utilization_threshold can be set for the entire system or for specific connections.

Area and Power Statements

The area and power statements provide the total area and power budgets provided in the system

design. These values are used by the Silistix CHAINarchitect and CSL Compiler software to report

percentages of total die area utilized by the interconnect logic and the miniscule amount of additional

power required to implement the CHAIN network.

area Statement

Use the area statement to specify the total die area target of your design or for an individual

endpoint. It is often more accurate to represent area at the endpoint level whenever possible.

CHAINarchitect and the CSL Compiler use this value to determine the percentage of total die area

utilized by the interconnect logic. It is also used for floor plan estimation purposes. If the area

statement is specified, then the value given takes precedence over any area values set for endpoints.

 Describing a System Using Connection Specification Language (CSL)

(v1.3, 31-OCT-2008) www.silistix.com 19

i

See the area section on page 25 on how to use this command with the First Placement

Estimator (FPE) tool.

Figure 13 provides an example of how to use the area statement to specify total silicon area

occupied by the system, including the area occupied by the CHAIN network.

Figure 13: CSL Code Snippet Demonstrating area and power Statements
/**
** CSL keywords and concepts demonstrated below:
** area and power syntax
**/
 area = 48.8 mm2; // Total silicon area, including CHAIN network
 power = 250.0 mW; // Total system power, without CHAIN network

The area statement has two possible unit values, as shown in Table 6. The specified technology

library contains the conversion information between these two unit values. See

endpoint_area_utilization on page 28 for more information on how these two unit

systems interrelate.

Table 6: Area Statement Units

Unit Description

mm2 Square millimeters of silicon.

kgates Thousands of gates.

power Statement

Use the power statement to specify the total power consumed by your design or for a specific

portion of the system. CHAINarchitect and the CSL Compiler use this value is used to report the

total system power, including power consumed by the interconnect logic. If the power statement is

specified, then the value given takes precedence over any power values set for endpoints.

Figure 13 above provides an example of how to use the power statement to specify total system

power consumed by the system, excluding the power consumed by the CHAIN network.

The power statement supports the unit values shown in Table 7. The “power per megahertz” units

are primarily used to specify sub-domains within the system.

Table 7: Power Statement Units

Unit Description

uW microwatts

mW milliwatts

Watts Watts

uWpMHz
microwatts per megahertz using the clock frequency defined for the associated
domain

mWpMHz
milliwatts per megahertz using the clock frequency defined for the associated
domain

WattpMHz Watts per megahertz using the clock frequency defined for the associated domain

i

It is typically more accurate to represent power at the endpoint level whenever

possible.

Describing a System Using Connection Specification Language (CSL)

20 www.silistix.com (v1.3, 31-OCT-2008)

Example CSL File

Figure 14 presents a top-level block diagram of an example system. The system includes a CPU, a

communications controller, and a shared SDRAM memory serving both the CPU and

communications controller. The CPU and the communications controller swap data via mailbox

registers.

Figure 14: Block Diagram of Example System
CPU COMM Controller

SDRAM Target

Mailbox
Target

Mailbox
Target

Address

Data Out

Data In

Address

Data Out

Data In

(400 MHz)

(133 MHz)

(155.5 MHz)

0x0

0x1ff

0x1000000

0x1ffffff

CPU Address Map

COMM
mailbox

External
SDRAM

CPU
mailbox

External
SDRAM

0x0

0xff

0x2000000

0x4ffffff

COMM Address Map

Figure 15 provides a complete CSL description for the example system shown in Figure 14.

Figure 15: Complete Example CSL File
// Target technology library
library Silistix_90nm_Generic ;

system my_system {

 // set optimization priority (1=highest, 3=lowest)
 optimize_area=1;
 optimize_latency=2;
 optimize_power=3;

 area = 48.8 mm2; // Total silicon area, including CHAIN network
 power = 250.0 mW; // Total system power, without CHAIN network

 // set threshold on how close the actual values approach the
 // specified limits
 // (alternate view): what is the confidence in the
 // specified limits?
 utilization_threshold = 90% ;

 // address map for the CPU
 address_map CPU_address {
 range comm_mailbox 0x0000000 .. 0x00001ff;
 range external_sdram 0x1000000 .. 0x4ffffff;
 }

 Describing a System Using Connection Specification Language (CSL)

(v1.3, 31-OCT-2008) www.silistix.com 21

 // address map for the COMM controller
 address_map COMM_address {
 range CPU_mailbox 0x0000000 .. 0x00000ff;
 range external_sdram 0x2000000 .. 0x4ffffff;
 }

 // define each of the various clock domains and endpoints
 domain cpu_domain (400 MHz) {
 CPU {
 protocol = "AXI"; // "AHB", "APB", "AXI", "OCP"

 initiator CPU_initiator {
 address = 32 bits ;
 data = 32 bits ;
 peak = 1600 MBs ;
 burstsize = 32 bytes ;
 address_map = CPU_address ;
 outstanding = 8;
 write_response = 2.5 ns ;
 read_response = 2.5 ns ;
 // AXI protocol-specific options
 axi_id_bits = 4 ;
 } // end CPU_initiator

 target CPU_mailbox {
 address = 8 bits ;
 data = 16 bits ;
 burstsize = 16 bytes ;
 address_range = COMM_address.CPU_mailbox ;
 // AXI protocol-specific options
 axi_id_bits = 1 ;
 axi_write_interleave_depth = 1 ;
 } // end CPU_mailbox target
 } // end CPU endpoint
 } // end cpu_domain

 domain memory_domain (333 MHz) {
 SDRAM {
 protocol = "AHB"; // "AHB", "APB", "AXI", "OCP"

 target SDRAM_target {
 address = 32 bits ;
 data = 32 bits ;
 burstsize = 128 bytes ;
 address_range = {CPU_address.external_sdram,
 COMM_address.external_sdram} ;
 write_response = 25 ns ;
 read_response = 50 ns ;
 } // end SDRAM_target
 } // end SDRAM endpoint
 } // end memory_domain

Describing a System Using Connection Specification Language (CSL)

22 www.silistix.com (v1.3, 31-OCT-2008)

 domain communications_domain (180 MHz) {
 COMM {
 protocol = "AHB"; // "AHB", "APB", "AXI", "OCP"

 initiator communications_initiator {
 address = 32 bits ;
 data = 32 bits ;
 burstsize = 32 bytes ;
 address_map = COMM_address ;
 ahb_version = lite ;
 } // end communications_initiator

 target comm_mailbox {
 address = 16 bits ;
 data =16 bits ;
 burstsize = 64 bytes ;
 address_range = CPU_address.comm_mailbox ;
 write_response = 10 ns ;
 read_response = 5 ns ;
 ahb_version = lite ;
 } // end comm_mailbox
 } // end COMM endpoint
 } // end communications_domain

 // Define operating modes and connections between endpoints

 utilization_threshold = 75% ; // lower confidence in limits

 mode high_speed {
 // Connections between CPU and SDRAM
 CPU.CPU_initiator => SDRAM.SDRAM_target
 (bandwidth=133 MBs, latency=90 ns) ;

 CPU.CPU_initiator <= SDRAM.SDRAM_target
 (bandwidth=333 MBs) ;

 // Connections between COMM controller and SDRAM
 COMM.communications_initiator => SDRAM.SDRAM_target
 (bandwidth=50 MBs) ;

 COMM.communications_initiator <= SDRAM.SDRAM_target
 (bandwidth=133 MBs) ;

 // Connection between CPU and COMM controller mailbox
 CPU.CPU_initiator => COMM.comm_mailbox
 (bandwidth=0 MBs) ;

 CPU.CPU_initiator <= COMM.comm_mailbox
 (bandwidth=0 MBs) ;

 // Connection between COMM and CPU mailbox
 COMM.communications_initiator => CPU.CPU_mailbox
 (bandwidth=0 MBs);

 COMM.communications_initiator <= CPU.CPU_mailbox
 (bandwidth=0 MBs);
 } // end high_speed mode

 Describing a System Using Connection Specification Language (CSL)

(v1.3, 31-OCT-2008) www.silistix.com 23

 utilization_threshold = 85% ; // confidence greater for
 // following modes

 mode low_power {
 // Connections between CPU and SDRAM
 CPU.CPU_initiator => SDRAM.SDRAM_target
 (bandwidth=10 MBs) ;

 CPU.CPU_initiator <= SDRAM.SDRAM_target
 (bandwidth=10 MBs) ;

 // Connections between COMM controller and SDRAM
 COMM.communications_initiator => SDRAM.SDRAM_target
 (bandwidth=0 MBs) ;

 COMM.communications_initiator <= SDRAM.SDRAM_target
 (bandwidth=0 MBs) ;

 // Connection between CPU and COMM controller mailbox
 CPU.CPU_initiator => COMM.comm_mailbox
 (bandwidth=0 MBs) ;

 CPU.CPU_initiator <= COMM.comm_mailbox
 (bandwidth=0 MBs) ;

 // Connection between COMM and CPU mailbox
 COMM.communications_initiator => CPU.CPU_mailbox
 (bandwidth=0 MBs);

 COMM.communications_initiator <= CPU.CPU_mailbox
 (bandwidth=0 MBs);

 } // end low_power mode

 // Connection between CPU and COMM controller mailbox
 utilization_threshold = 95%; // high confidence in limits

 mode reset {
 // Connections between CPU and SDRAM
 CPU.CPU_initiator => SDRAM.SDRAM_target
 (bandwidth=33 MBs) ;

 CPU.CPU_initiator <= SDRAM.SDRAM_target
 (bandwidth=33 MBs) ;

 // Connections between COMM controller and SDRAM
 COMM.communications_initiator => SDRAM.SDRAM_target
 (bandwidth=0 MBs) ;

 COMM.communications_initiator <= SDRAM.SDRAM_target
 (bandwidth=0 MBs) ;

Describing a System Using Connection Specification Language (CSL)

24 www.silistix.com (v1.3, 31-OCT-2008)

 optimize_area=1;
 optimize_power=2;
 optimize_latency=3;

 // Connection between CPU and COMM controller mailbox
 CPU.CPU_initiator => COMM.comm_mailbox
 (bandwidth=5 MBs) ;

 CPU.CPU_initiator <= COMM.comm_mailbox
 (bandwidth=5 MBs) ;

 // Connection between COMM and CPU mailbox
 COMM.communications_initiator => CPU.CPU_mailbox
 (bandwidth=2 MBs, latency=150 ns);

 COMM.communications_initiator <= CPU.CPU_mailbox
 (bandwidth=2 MBs, latency=110 ns);

 } // end reset mode

 // Add "--define:INCLUDE_SCSL" to CSL Compiler options to
 // include structural CSL file during NPV validation
 #if defined(INCLUDE_SCSL)
 #include "struct_csl.csl"
 #endif

} // end system

First Placement Estimator (FPE) Constructs

The previous sections described how to construct an example system using a Silistix network. All

the CSL constructs used so far describe various communication and connectivity aspects of the

design. The following sections use additional CSL constructs to describe the physical attributes of

the design. These constructs are necessary to use the First Placement Estimator (FPE) tool, which is

part of CHAINarchitect.

These additional CSL constructs perform one of the two functions, as further described in the

sections below.

 Describing Physical Attributes

 Controlling Block Placement and Floor Planning

With these language constructs and the FPE tool, the CHAINarchitect software generates a more

accurate model of the entire system, including any placement-induced affects. For example, without

FPE, the CHAINarchitect software is unaware of actual physical placement and evaluates network

performance assuming that all the network components are physically placed at their maximum

distance or hop length. However, due to real physical placement constraints, some of the network

connections may exceed this maximum hop length. With FPE, the CHAINarchitect software

automatically inserts the required number of “pipelatch” components to re-buffer network

connections, shortening the hop length between components. These pipelatch components maintain

bandwidth regardless of physical separation while introducing only minor increases in latency for the

connection. With FPE, the CHAINarchitect software generates a report file that accounts for these

placement-induced effects, including the pipelatch components. The FPE tool also generates an

initial placement of the design that is used with synthesis or physical placement. Each initial

placement can be evaluated and optimized by adjusting the CSL description and changing various

options available in CHAINarchitect.

 Describing a System Using Connection Specification Language (CSL)

(v1.3, 31-OCT-2008) www.silistix.com 25

For additional information on running the First Placement Estimator (FPE) tool, see the “Generate

First Placement Estimation” section in Building and Analyzing On-Chip Networks using

CHAINarchitect user guide.

Describing Physical Attributes

The CSL language constructs in this section describe the physical attributes of the system or

individual endpoints.

area

The area statement defines the area of an individual IP block or for the entire system. When used

within an endpoint, the area statement specifies the silicon area consumed by the IP block. When

describing the area of the entire system, the area statement defines just the core logic area and not

the pad ring that surrounds the core logic, as shown in Figure 16.

Figure 16: Area, pad_ring, and aspect_ratio

area

pad_ring

width
h

e
ig

h
t

aspect_ratio =
width

height

Core Logic

Connection
pad

The Silistix software uses the values specified by the designer when calculating the percentage of

total die area utilized by the interconnect logic. These values are used by the First Placement

Estimator (FPE) tool for floor planning purposes. The area specified for the entire system takes

precedence over the calculated value from the area values set for each endpoint when determining

total area. However, the area values set for the endpoints are still used by the FPE tool.

The area specification uses two possible units. The mm2 unit system measures area in post-layout

square millimeters of silicon for the target process technology. The kgates unit system describes

area indirectly, measured in raw synthesized thousands of gates, pre-layout and without any

consideration for clock trees, reset distribution, etc. This value is most commonly derived by

synthesizing the endpoint with a logic synthesis package and using the reported gate-equivalence.

The specified Silistix target library includes information on how many thousands of equivalent gates

are in a square millimeter of silicon for the target process technology. The

endpoint_area_utilization specification further describes the fraction of the post-layout

area that is occupied by gates, the remainder being wiring.

Describing a System Using Connection Specification Language (CSL)

26 www.silistix.com (v1.3, 31-OCT-2008)

The area statement has the following forms.

area = <value> mm2 ;

or

area = <value> kgates ;
Example

area = 144 mm2; // Die is 12 mm on a side, assuming a square die

Example

area = 57.7 kgates; // The IP block is equivalent to 57,700
 // gates according to logic synthesis
endpoint_area_utilization = 80%; // gate area is 80% of total
// Total post-layout area is 125% of gate area,
// which includes area for wiring

Example

#define CORE_WIDTH_MM 3.2
#define CORE_HEIGHT_MM 4.2
area = (CORE_WIDTH_MM * CORE_HEIGHT_MM) ;

pad_ring

The pad ring surrounds the core logic area as illustrated in Figure 16.

The pad_ring statement specifies the width of the pad ring surrounding the die, which is equal

width around. Any connection pads defined by pad statements reside within this pad ring. The

pad_ring statement has the following form.

pad_ring = <expression> um; // Specified in microns

If no pad_ring is specified, then the Silistix software assumes a 200 micron wide pad ring.

aspect_ratio

The aspect ratio specification describes the shape of the die or IP block. The aspect ratio value is the

width divided by the height, as illustrated in Figure 16. Consequently, a value greater than one

specifies a block that is wider than it is tall as pictured in Figure 17. Conversely, a value less than

one specifies a block that is taller than it is wide. A value of one specifies a perfect square.

The aspect_ratio and the area statements completely specify the shape of the die, endpoint, or

object, which is used by the First Placement Estimator (FPE).

Figure 17: Aspect Ratio Examples

aspect_ratio = 0.5

aspect_ratio = 2.0

aspect_ratio = 1.0

> 1 = 1 < 1
Wide Square Tall

 Describing a System Using Connection Specification Language (CSL)

(v1.3, 31-OCT-2008) www.silistix.com 27

The aspect_ratio statement has the following form.

aspect_ratio = <value> ; // ratio of (width / height)

If no aspect_ratio is defined, then the Silistix software assumes a ratio of 1.0, which represents

a perfectly square die or IP block.

Example

aspect_ratio = 1.2;

Example

#define CORE_WIDTH_MM 3.2
#define CORE_HEIGHT_MM 4.2
aspect_ratio = (CORE_WIDTH_MM / CORE_HEIGHT_MM) ;

block_type

For the First Placement Estimator (FPE) tool, each endpoint or functional block described in the CSL

source file can be assigned one of four possible block types. The block type indicates how the block

is delivered or described. The various options appear in Table 8. A soft IP block is described as

RTL in Verilog; synthesized; and then placed and routed during physical implementation. A hard

IP block is is a pre-implemented, technology-targeted function complete with physical layout. The

block type also describes whether a block connects to Silistix network or whether is it a stand-alone

terminal function, separate from the Silistix network. If the block type is not defined, then the FPE

software assumes that the endpoint is a soft IP block connected to the Silistix network.

So why describe a terminal function that does not connect to the Silistix network? These terminal

functions exist in the final design and they occupy space in the physical layout. If these terminal

blocks are defined in the CSL, then the FPE software generates a more accurate initial placement and

results in a faster back-end flow. Assign these non-connected blocks a block_type of

soft_terminal or hard_terminal, depending on whether the block is a soft or hard IP block

as described in Table 8. Examples might include a block of memory or a DMA engine driving one

of the endpoints. These terminal blocks can be associated with other blocks as described in

“Forming Relationships” starting on page 30.

Table 8: Block Types

Macro Type Character

block_type=
Connects to Silistix

Network
Does not connect to

Silistix Network

Soft
Described in RTL, no
physical placement

information

soft soft_terminal

Hard
Hard macro IP with

physical layout
hard hard_terminal

The block_type statement has the following form.

block_type = <type> ;

Where :

<type> is soft, hard, soft_terminal, or hard_terminal as described in Table 8.

A hard or hard_terminal block type also requires an associated footprint statement.

Describing a System Using Connection Specification Language (CSL)

28 www.silistix.com (v1.3, 31-OCT-2008)

Example

 Unrelated_soft_IP {
 block_type = soft_terminal ;
 } // Other logic used in design, but not on Silistix network

footprint

The footprint statement specifies the actual name of a hard IP block to be used for placement

and routing. Any IP blocks declared with a block_type of hard or hard_terminal must

have an associated footprint statement. The specified name is used when writing out the placed

design to the DEF file. Subsequently, your preferred ASIC/SoC place and route software will insert

the correct GDSII view from the library based on this name.

The footprint statement has the following form.

footprint = “<name>” ;

Example

 sram_block_cpu {
 block_type = hard_terminal ;
 footprint = "SRAM_DP_32x512" ;
 . . .
 } // SRAM block for CPU

endpoint_area_utilization

The endpoint_area_utilization statement defines how an area that is specified in pre-

layout kgates is then converted to post-layout estimates of total die area, measured in mm2. As

shown in Equation 3, the endpoint area utilization is specified as the percentage of the final post-

layout area that is occupied by gates, the remainder filled with wiring. The target technology library

includes a conversion factor that specifies how many thousands of gates fit in a square millimeter of

silicon for the target process technology. The endpoint_area_utilization statement

modifies the values defined in the target technology library, allowing modifications for a particular

tool flow, level of expertise, or fabrication contstraints.

The endpoint_area_utilization statement has the following form.

endpoint_area_utilization = <expression> %;

Example:

endpoint_area_utilization = 80%; // gate area is 80% of total
// Total post-layout area is 125% of gate area

Equation 3

halo

As shown in Figure 18, a “halo” is a region surrounding a hard IP block where other gates or blocks

cannot be placed, thereby providing space for wire routing. The halo statement specifies the

percentage of the hard macro area allocated to wiring to and from the hard IP block. For example,

halo = 5% creates a region surrounding the block equal to 5% of the area of the block. This value

can be specified for any endpoints with block_type = hard or block_type =
hard_terminal. The halo value also applies to the Silistix networks elements that are hard IP

blocks.

 Describing a System Using Connection Specification Language (CSL)

(v1.3, 31-OCT-2008) www.silistix.com 29

Figure 18: Halo around Hard IP Block

Halo (area available for wiring to block)

Hard IP Block

Halo area = halo x area

block_type=hard or
=hard_terminal

The halo statement has the following form.

halo = <expression> %;

If no halo value is specified, then the Silistix software uses a halo of 5%.

elasticity_threshold

Before First Placement Estimation, the Silistix software estimates timing based on the maximum

network hop length, which is determined by the selected technology library. The maximum hop

length is the maximum wire length allowed between network components. Connections longer than

the maximum hop length are automatically re-buffered using pipelatch components. The

elasticity_threshold statement scales the maximum network hop length as shown in

Equation 4, allowing additional delay and flexibility during layout.

Equation 4

For example, if the maximum hop length for the specified technology library is 600 µm, and

elasticity_threshold = 80%, then the Silistix software re-buffers network connections

every 480 µm (80% of 600 µm). The extra 20% margin allows for additional flexibility during

actual layout.

An elasticity_threshold = 100% means that network connections are at the maximum

hop length, making it difficult to move the network blocks during physical implementation without

perturbing their bandwidth capability. In other words, at 100%, there is little flexibility on where

network components can be placed, either in FPE or in physical layout.

The elasticity_threshold has the following form.

elasticity_threshold = <value> %;

If no elasticity_threshold is specified, then the Silistix software uses 80%.

Describing a System Using Connection Specification Language (CSL)

30 www.silistix.com (v1.3, 31-OCT-2008)

Controlling Block Placement and Floor Planning

The CSL language provides various constructs to describe the “virtual” connections and associations

between blocks. The connections are not actual signal wires in the design but are a simple means to

create relationships between IP blocks or pads on the device. These relationships provide important

spatial information and constraints to the First Placement Estimator (FPE) tool.

Forming Relationships

A relationship is defined by first declaring two anchor points and then connecting the two points

together with a net. An anchor point is either a pin on an IP block or a pad connected in the pad

ring of the device. At least one of the anchor points must be a pin.

A net statement then connects the two anchor points together and specifies the relative importance

or weight of this relationship.

pin

A pin statement names an anchor point, and specifies its location within a block using Relative

Coordinates. This pin can then be referenced in net statements to define spatial relationships

between blocks. The pin statement has the following form.

pin <name> <rel_x>%,<rel_y>% ;

Where :

<name> is the name of the pin, unique to the endpoint.

<rel_x> is the relative position from the center of the block, based on the width of the block.

<rel_y> is the relative position from the center of the block, based on the height of the block.

i

To define a relationship with a Silistix network gateway, declare the pin within the

initiator or target port declaration. Alternatively, use the --fpe-center-
gateways or set the w4 weight using the --fpe-weights option for the CSL

Compiler or from within the CHAINarchitect software.

pad

The pad statement defines the location of an I/O pad on the die. This statement provides a means to

associate an IP block to a pad location die during First Placement Estimation (FPE).

A pad can then be connected to a pin specified for endpoint using a net statement. The pad

statement has the following form.

pad <name> <rel_x> %,<rel_y> %;

Where :

<name> is a unique pad name.

<rel_x> specifies the horizontal position of the pad, relative to the center of the die based on the

width of the die. For example, -50% represents the left edge of the die and +50% represents the right

edge of the die.

<rel_y> specifies the vertical position of the pad, relative to the center of the die based on the

height of the die. For example, -50% represents the bottom edge of the die and +50% represents the

top edge of the die.

 Describing a System Using Connection Specification Language (CSL)

(v1.3, 31-OCT-2008) www.silistix.com 31

net

The net statement connects pins that are defined in endpoints to pads or to pins defined in other

endpoints. The net statement creates “virtual” connections between pins and pads; these are not

actual connections within the design but associates blocks to one another. This association provides

important spatial constraints to the First Placement Estimator (FPE). Each net statement has a weight

that represents the strength of the virtual connection. The higher the weight, the more important it is

that the blocks be placed closer together.

The net statement has the following form.

net <pin_or_pad1> = <pin_or_pad2> (<weight>);

Where:

<pin_or_pad1> is the name of a pin defined in an endpoint or a previously-defined pad.

<pin_or_pad2> is the name of a different pin or a previously-defined pad.

<pin_or_pad1> and <pin_or_pad2> cannot both be pads. One connection must be to non-pad

pin.

<weight> is a value between 1 and 1000. The higher the weight, the higher is the relative

importance of the associated connection. Generally, a higher weight results in the connected IP

blocks being placed closer together.

When referencing a pin, the following form may be used.

<clkdomain>.<endpoint>.<pin>

If <endpoint> is unique to the system, then <clkdomain> may be omitted.

!

A pad or pin name can only be connected once in the current release. To connect a

pad or pin to multiple anchor points, duplicate the pad or pin but with a unique name.

Pin, Pad, Net Connection Examples

An example best illustrates how to create relationships between blocks. Assume that there are two

IP blocks in the system, Block_A and Block_B as shown in Figure 19.

Figure 19: Two IP Blocks in the System

Block_A

Block_B

To form a relationship between these two IP blocks, first create an anchor point within each block, as

shown in Figure 20. An anchor point within an IP block is called a pin. Creating a connection to a

pad anchor point is slightly different as described later. In CSL, pins must be declared within the

endpoint declaration as shown in Figure 21. The pin can be placed physically anywhere on the IP

block using Relative Coordinates. For simplicity’s sake, this example places the pins in the center of

each block, at position 0%, 0%.

Describing a System Using Connection Specification Language (CSL)

32 www.silistix.com (v1.3, 31-OCT-2008)

Figure 20: Creating Anchor Points

Block_A

Pin_X

pin Pin_X 0%, 0%;

Pin_Y

Block_B

pin Pin_Y 0%, 0%;

Figure 21: Declaring Pins
Block_A {
 . . .
 pin pin_X 0%, 0% ; // declare Pin_X
 . . .
}

 . . .

Block_B {
 . . .
 pin pin_Y 0%, 0% ; // declare Pin_Y
 . . .
}

To associate the two blocks, connect them using a net declaration as shown in Figure 22. In CSL,

the net statement can generally appear anywhere after the pin or pad anchor points are declared.

The net statement equates the two pins and then specifies the relative strength or weight of the

connection between them. Think of this net connection as a spring connecting the two anchor

points.

Figure 22: Declaring a Net

Block_A

Pin_X

pin Pin_X 0%, 0%;

Pin_Y

Block_B

net Pin_X = Pin_Y (2);

pin Pin_Y 0%, 0%;

If the spring is relatively weak, as it is in Figure 22, the spring stretches easily. Consequently,

Block_A and Block_B are placed in the general vicinity of each other, but not necessarily closely

together. By increasing the strength or weight on the net, the blocks are pulled closer together, as

illustrated in Figure 23. Increasing the net weight from 2 to 500 strengthens the connection between

the blocks, pulling them closer together.

 Describing a System Using Connection Specification Language (CSL)

(v1.3, 31-OCT-2008) www.silistix.com 33

Figure 23: Increasing Net Weight

Block_A

Pin_X

pin Pin_X 0%, 0%;

Pin_Y

Block_B

net Pin_X = Pin_Y (500);

pin Pin_Y 0%, 0%;

Changing the position of the pins within the IP blocks also impacts placement. In Figure 23, the pins

are located in the center of the endpoints. Consequently, Block_A and Block_B fit equally well

along any of the four block edges. However, changing the location of the pins, as shown in Figure

24, tends to place Block_B on top of Block_A. In Block_A, the pin moved from the center (0%,

0%) up to the top edge (0%, 50%). Similarly in Block_B, the pin moved from the center down to the

bottom edge (0%, -50%).

Figure 24: Changing Pin Location Impacts Placement

pin Pin_X 0%, 50%;

Pin_Y

net Pin_X = Pin_Y (200);

pin Pin_Y 0%, -50%;

Block_B

Block_A

Pin_X

Using a pad as an anchor point is similar to using a pin. The difference is that the pad resides in the

pad ring surrounding the core area. Again, the pad statement does not physically create a pad on the

die. Instead, it defines an anchor point in the pad ring surrounding the die. The pad location is

specified using Relative Coordinates except that either the X- or Y-coordinate is locked to a device

edge. Pads along the top edge of the die always have a Y-coordinate fixed at 50%, as shown in

Figure 25. The X-coordinate can vary, specifying any location along the top but the Y-coordinate is

fixed at 50%. The other die edges are similar.

Describing a System Using Connection Specification Language (CSL)

34 www.silistix.com (v1.3, 31-OCT-2008)

Figure 25: Pad Coordinates

Pad ring

Core Logic

X%, 50%

X%, -50%

5
0
%
,

Y
%

-
5
0
%
,

Y
%

The example in Figure 26 connects a pin in Block_A, called Pin_W, to a pad called Pad_Z, which is

located in the pad ring along the right edge.

Figure 26: Example Connection to Pad along Right Edge

Block_A

Pin_X

pin Pin_W 0%, 0%;

Pad Ringnet Pin_W = Pad_Z (2);

Pad_Z

Relative Coordinates

Specify locations within the core area, within the endpoint, or within an IP block using the relative

coordinate system shown in Figure 27. This relative coordinate system applies regardless of the

actual size or aspect ratio of the block or die. The center of the block is at position 0%, 0%. The

horizontal position, or X-coordinate, starts at -50% at the left edge, increases to 0 at the midpoint,

and continues increasing to 50% at the right edge. The vertical position or Y-coordinate is similar,

although -50% is at the bottom edge, 50% along the top edge.

 Describing a System Using Connection Specification Language (CSL)

(v1.3, 31-OCT-2008) www.silistix.com 35

Figure 27: Relative Coordinate System

0% 50%-50%

50%

0%

-50%

Relative X Position

R
e

la
ti

v
e

 Y
 P

o
s

it
io

n

pin my_pin -25%, 40% ;

The same relative coordinate system applies when defining a pad location, as shown in Figure 25.

Absolute Coordinates

Use the locate statement to specify an absolute location, relative to the lower left corner of the

core area. The values specified are in microns. A locate statement applies to any block_type,

although it is most often used to place hard or hard_terminal blocks because soft IP blocks

typically have an irregular, free-form shape.

locate <x_loc>, <y_loc>;
Where :

<x_loc> and <y_loc> are specified in microns, relative to the lower left corner of the core area.

Example CSL Design (with FPE constructs)

The CSL file listed in Figure 28 is essentially the same as that shown in Figure 15 except that it

includes various FPE constructions. For additional information on running the First Placement

Estimator (FPE) tool, see the “Generate First Placement Estimation” section in Building and

Analyzing On-Chip Networks using CHAINarchitect user guide.

Figure 28: Example CSL Design with FPE Constructs
// Target technology library
library Silistix_90nm_Generic;

system my_system {

 // set optimization priority (1=highest, 3=lowest)
 optimize_area=1;
 optimize_latency=2;
 optimize_power=3;

 #define CORE_WIDTH_MM 3.5
 #define CORE_HEIGHT_MM 4.5

// Total silicon area, including CHAIN network
 area = CORE_WIDTH_MM * CORE_HEIGHT_MM mm2 ;

 aspect_ratio = (CORE_WIDTH_MM / CORE_HEIGHT_MM);

Describing a System Using Connection Specification Language (CSL)

36 www.silistix.com (v1.3, 31-OCT-2008)

 power = 250.0 mW; // Total system power

 // Set exclusion region around IP block, 5% of total area
 halo = 5% ;

 // Set size of pad ring to 100 microns (um)
 pad_ring = 100 um ;

 elasticity_threshold = 80% ;

 // set threshold on how close the actual values approach the
 // specified limits
 // (alternate view): what is the confidence in the
 // specified limits?
 Utilization_threshold = 0.90% ;

 // address map for the CPU
 address_map CPU_address {
 range comm_mailbox 0x0000000 .. 0x00001ff;
 range external_sdram 0x1000000 .. 0x4ffffff;
 }

 // address map for the COMM controller
 address_map COMM_address {
 range CPU_mailbox 0x0000000 .. 0x00000ff;
 range external_sdram 0x2000000 .. 0x4ffffff;
 }

 pad CPU_endpoint_pad -50%, 50% ; // Top-left corner
 pad SDRAM_endpoint_pad 50%, 0% ; // Right edge
 pad COMM_endpoint_pad 0%, -50% ; // Bottom edge
 pad interface_pad -50%, -25% ; // Left edge

 // define each of the various clock domains and endpoints
 clock_domain cpu_domain (400 MHz) {
 CPU {
 protocol = "AXI"; // "AHB", "APB", "AXI", "OCP"
 pin CPU_anchor -50%, 50% ;
 // anchor point to SRAM hard block
 pin CPU_SRAM_anchor 0%, 0% ;
 area = 700 kgates ;
 block_type = soft ;

 initiator CPU_initiator {
 address = 32 bits ;
 data = 32 bits ;
 peak = 1600 MBs ;
 burstsize = 32 bytes ;
 address_map = CPU_address ;
 outstanding = 8;
 write_response = 2.5 ns ;
 read_response = 2.5 ns ;
 axi_id_bits = 4 ;
 } // end CPU_initiator

 Describing a System Using Connection Specification Language (CSL)

(v1.3, 31-OCT-2008) www.silistix.com 37

 target CPU_mailbox {
 address = 8 bits ;
 data = 16 bits ;
 burstsize = 16 bytes ;
 address_range = COMM_address.CPU_mailbox ;
 axi_id_bits = 1 ;
 axi_write_interleave_depth = 1 ;
 } // end CPU_mailbox target
 } // end CPU endpoint

 // Declare SRAM block used with CPU, not on network
 sram_block_cpu {
 block_type = hard_terminal ;
 footprint = "SRAM_DP_32x512" ;
 // locate = 100,400;
 aspect_ratio = 1.7 ;
 area = 0.11 mm2 ; // 60k gates. Synopsys reported= 0.1
 pin SRAM_anchor 0%, 0% ;
 } // SRAM block for CPU, no connected to network

 // Declare soft interface logic block, not on network
 interface_logic {
 block_type = soft_terminal ;
 area = 0.08 mm2 ;
 pin interface_anchor 0%, 0% ;
 } // not connected to network

 } // end cpu_domain

 clock_domain memory_domain (333 MHz) {
 SDRAM {
 protocol = "AHB"; // "AHB", "APB", "AXI", "OCP"
 area = 2.5 mm2 ;
 aspect_ratio = 1.3 ;
 pin SDRAM_anchor 0%, 0% ;

 target SDRAM_target {
 address = 32 bits ;
 data = 32 bits ;
 burstsize = 128 bytes ;
 address_range = {CPU_address.external_sdram,
 COMM_address.external_sdram} ;
 write_response = 25 ns ;
 read_response = 50 ns ;
 } // end SDRAM_target
 } // end SDRAM endpoint
 } // end memory_domain

Describing a System Using Connection Specification Language (CSL)

38 www.silistix.com (v1.3, 31-OCT-2008)

 clock_domain communications_domain (180 MHz) {
 COMM {
 protocol = "AHB"; // "AHB", "APB", "AXI", "OCP"
 area = 2.1 mm2 ;
 pin COMM_anchor 0%, 0% ;
 initiator communications_initiator {
 address = 32 bits ;
 data = 32 bits ;
 burstsize = 64 bytes ;
 address_map = COMM_address ;
 ahb_version = lite ;
 } // end communications_initiator

 target comm_mailbox {
 address = 16 bits ;
 data = 16 bits ;
 burstsize = 64 bytes ;
 address_range = CPU_address.comm_mailbox ;
 write_response = 10 ns ;
 read_response = 5 ns ;
 ahb_version = lite ;
 } // end comm_mailbox
 } // end COMM endpoint
 } // end communications_domain

 // Declare pins and pads before specifying nets
 // Net weights defined in parentheses.

 // Associate CPU block and SRAM block
 net CPU_SRAM_anchor = SRAM_anchor (500) ;

 // Define pin/pad connections for placement
 net CPU_endpoint_pad = CPU_anchor (500) ;
 net COMM_endpoint_pad = COMM_anchor (50) ;
 net SDRAM_endpoint_pad = SDRAM_anchor (250) ;
 net interface_pad = interface_anchor (10) ;

// Define connections between endpoints

 . . .

} // end system

 Describing a System Using Connection Specification Language (CSL)

(v1.3, 31-OCT-2008) www.silistix.com 39

General Design Methodology

The following steps provide an overall methodology to specify a system in CSL.

Include the target technology library.

For the system …

 Give it a name

 Declare each independent address map. For each address map …

o Give it a name

o Declare each range of target addresses within the address map. For each address range …

 Give it a name

 Provide a starting (low) byte address

 Provide an ending (high) high address

 Declare every clock domain. For each domain …

o Give it a name

o Specify its operating frequency in MHz or Mhz

o Within each clock domain, declare every endpoint that connects to other endpoints in the

system. For each endpoint …

 Give it a name

 Declare the interface protocol

 Declare every initiator, including the following characteristics:

 Give it a name

 Declare address width in bits

 Declare a data width in bits

 Optionally, declare a peak transfer rate in Mbs, MBs, Gbs, or GBs. Only required

if the endpoint cannot support the theoretical peak bandwidth (frequency × data

width).

 Declare a maximum burstsize in bits or bytes

 Declare an address_map

 Optionally, declare the number of outstanding transactions allowed

 For accurate roundtrip system timing predictions, specify the write_response

and read_response delay between initiator write and read requests

 Declare every target, including the following characteristics:

 Give it a name

 Declare address width in bits

 Declare a data width in bits

 Optionally, declare a peak transfer rate in Mbs, MBs, Gbs, or GBs

 Declare a maximum burstsize in bits or bytes

Describing a System Using Connection Specification Language (CSL)

40 www.silistix.com (v1.3, 31-OCT-2008)

 Declare an address_range or multiple ranges

 For accurate roundtrip system timing predictions, specify the write_response

and read_response delay for the target

For each operating mode, declare the following connection information.

 For each connection from an initiator  target, describe the write operation characteristics.

o Specify roundtrip connections using the => operator. Alternatively, specify unidirectional

connections using the -> connection operator.

o Bandwidth in Mbs, MBs, Gbs, or GBs

o Optionally, specify latency in ns. Specify roundtrip system latency when using the =>

operator and switching latency with using the -> operator.

 For each connection from an initiator  target, describe the read operation characteristics.

o Specify roundtrip connections using the => operator. Alternatively, specify unidirectional

connections using the -> connection operator.

o Bandwidth in Mbs, MBs, Gbs, or GBs

o Optionally, specify latency in ns. Specify roundtrip system latency when using the =>

operator and switching latency with using the -> operator.

Set the relative priorities for optimize_latency, optimize_power, and for

optimize_area, with 1 being the highest, 3 being the lowest. The priorities can be set for the

entire system or for individual connections.

Optionally, specify the total silicon area occupied by the system design, including the area used by

the CHAIN network.

Optionally, specify the total power consumed by the system design, excluding the power consumed

by the CHAIN network.

To overprovision latency or bandwidth, set the utilization_threshold level, either for the

entire system or for individual connections.

Add First Placement Estimator (FPE) constructs.
name or identifier

Naming/Identifier Conventions

To make your CSL code more understandable to others and to ease debugging and analysis, use

descriptive names.

In the CSL language, names or identifiers …

 are case sensitive

 must begin with one of the following …

o an uppercase letter (A .. Z), or

o a lowercase letter (a .. z), or

o an underscore character (_)

 may include any further combination of …

o uppercase letters (A .. Z),

o lowercase letters (a .. z),

 Describing a System Using Connection Specification Language (CSL)

(v1.3, 31-OCT-2008) www.silistix.com 41

o digits (0, 1, .., 9), and

o underscore characters (_).

 can be up to 32 characters long. Any identifier longer than 32 characters is truncated to 32

characters.

!

Do not use a space, or a hyphen, dash, or minus sign (-) in names or identifiers.

These characters will generate a syntax error.

Table 9 provides a few examples of invalid names along with corresponding valid names.

Table 9: Invalid and Valid Names/Identifiers

Invalid Names/Identifiers Issue? Valid Names/Identifiers
CPU-System

32MHz

Hyphen in name

Name begins with a number

CPU_System

Clock_32MHz or _32MHz

Number Conventions

In CSL, specify numbers as using one of the formats shown in Table 10.

Table 10: CSL Number Formats

Number Type Examples

Decimal Integer 12345

Hexadecimal Integer 0xabc123

Decimal Floating Point
1.2345
0.1234
1.23e-10

Describing a System Using Connection Specification Language (CSL)

42 www.silistix.com (v1.3, 31-OCT-2008)

Revision History

Revision Date Description/Revisions

1.3 31-OCT-2008
Minor corrections. Added information on using Modes of
Operation when declaring connections.

1.2 5-AUG-2008
Added sections on First Placement Estimator (FPE) Constructs.
Updated to CHAINworks 2.1 release.

1.1 22-MAY-2008 Updated with recent syntax changes.

1.0 21-DEC-2007 Initial release.

Feedback

Feedback on this Silistix document and all Silistix products is highly encouraged. If you have a

comment, correction, or suggestion to improve this document, please send us an E-mail. Please

include complete details including page numbers, section titles, or figure or table numbers where

appropriate. Thank you in advance for helping us to improve our products and services.

feedback@silistix.com

Disclaimers

The information in this document is believed to be accurate in all respects at the time of publication but is
subject to change without notice. Silistix assumes no responsibility for errors and omissions, and disclaims
responsibility for any consequences resulting from the use of information included herein. Additionally, Silistix
assumes no responsibility for the functioning of undocumented features or parameters. Silistix reserves the
right to make changes without further notice. Silistix makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Silistix assume any liability arising out of the
application or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. Silistix products are not designed, intended, or authorized for
use in applications intended to support or sustain life, or for any other application in which the failure of the
Silistix product could create a situation where personal injury or death may occur. Should Buyer purchase or
use Silistix products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silistix
harmless against all claims and damages.

Silistix, CHAINworks, CHAINarchitect, and CSL are trademarks of Silistix, Inc. and Silistix UK,

Ltd.

Other products or brand names mentioned herein are trademarks or registered trademarks of their

respective holders.

mailto:feedback@silistix.com?subject=[FEEDBACK:%20%20Describing%20a%20System%20in%20Connection%20Specification%20Language%20(CSL),%20v1.2.2]:&body=Describe%20your%20correction,%20%20comment,%20or%20suggestion%20in%20detail%20using%20page%20numbers,%20section%20titles,%20or%20figure%20or%20table%20numbers%20where%20appropriate.

	Describing a System Using Connection Specification Language (CSL™)
	Introduction
	technology library

	Include Target Technology Library
	System-Level Description
	Endpoints
	Adapter Interface Protocol
	Port and Endpoint Basics
	command
	response

	initiator Declaration
	target Declaration
	address port width
	data port width

	Address and Data Widths
	peak transfer rate

	peak Bandwidth
	burst size
	burstsize

	Burst Size
	outstanding

	outstanding Transactions
	response
	write_response
	read_response

	response Delays

	Address Spaces
	address_map
	address_range
	Declaring an Address Map and Target Ranges
	Referencing an Address Map in an Initiator Declaration
	Referencing an Address Range in a Target Declaration

	Defining Connections between Endpoints
	Modes of Operation
	Different Directions, Different Requirements
	Roundtrip Connection Operators
	Unidirectional Connection Operators
	CSL Example: Roundtrip Connections

	Switching Latency
	Network Roundtrip Latency
	System Roundtrip Latency

	Setting Optimization Priorities
	Over-Provisioning and Dealing with Uncertainty
	Area and Power Statements
	area Statement
	power Statement

	Example CSL File
	First Placement Estimator (FPE) Constructs
	Describing Physical Attributes
	area
	pad_ring
	aspect_ratio
	block_type
	footprint
	endpoint_area_utilization
	halo
	elasticity_threshold

	Controlling Block Placement and Floor Planning
	Forming Relationships
	pin
	pad
	net
	Pin, Pad, Net Connection Examples
	Relative Coordinates
	Absolute Coordinates

	Example CSL Design (with FPE constructs)
	General Design Methodology
	name or identifier

	Naming/Identifier Conventions
	Number Conventions
	Revision History
	Feedback
	Disclaimers

