Describing a System Using
Connection Specification
Language (CSL)

Silistix

(CHAIN®works 2.1.1)

(v1.3, 31-OCT-2008) wwwe.silistix.com
© 2008 by Silistix UK Ltd.

Silistix

License
© 2008 Silistix, All Rights Reserved.

This document, including all software and software described in it, is furnished under the terms of
the CHAIN Documentation License Agreement (the "License™) and may only be used or copied in
accordance with the terms of the License. The information in this document is a work in progress,
developed by Silistix, and is furnished for informational use only.

The technology disclosed herein may be protected by one or more patents, copyrights, trademarks
and/or trade secrets owned by or licensed to Silistix. Silistix reserves all rights with respect to such
technology and related materials. Any use of the protected technology and related material beyond
the terms of the License without the prior written consent of Silistix is prohibited.

This document contains material that is confidential to Silistix and its licensors. The user should
assume that all materials contained and/or referenced in this document are confidential and
proprietary unless otherwise indicated or apparent from the nature of such materials (for example,
references to publicly available forms or documents). Disclosure or use of this document or any
material contained herein, other than as expressly permitted, is prohibited without the prior written
consent of Silistix or such other party that may grant permission to use its proprietary material.

The trademarks, logos, and service marks displayed in this document are the registered and
unregistered trademarks of Silistix.

The copyright and trademarks owned by Silistix, whether registered or unregistered, may not be used
in connection with any product or service that is not owned, approved or distributed by Silistix, and
may not be used in any manner that is likely to cause customer confusion or that disparages Silistix.
Nothing contained in this document should be construed as granting by implication, estoppel, or
otherwise, any license or right to use any copyright without the express written consent of Silistix, its
licensors or a third party owner of any such trademark.

Disclaimer

Except as otherwise expressly provided, this specification and any other documentation is provided
by Silistix to users "as is" without warranty of any kind, express, implied or statutory, including but
not limited to any implied warranties of merchantability, fitness for a particular purpose and non-
infringement of third party rights.

Silistix shall not be liable for any direct, indirect, incidental, special or consequential damages of any
kind or nature whatsoever (including, without limitation, any damages arising from loss of use or lost
business, revenue, profits, data or goodwill) arising in connection with any infringement claims by
third parties or the specification, whether in an action in contract, tort, strict liability, negligence, or
any other theory, even if advised of the possibility of such damages.

www.silistix.com (v1.3, 31-OCT-2008)

Silistix

Table of Contents

DESCRIBING A SYSTEM USING CONNECTION SPECIFICATION LANGUAGE (CSL ")

Le Lo To [0 Lo 10 o IS 5
Include Target Technology Library ... 5
System-Level DESCHIPTION ... 6
BN OINTS ottt 7
Adapter INterface ProtOCOIooiiiiiiiiii e 7
Port and ENdpoint BaSICSccoviiiiiiiiieeee e 9
TNTETATOr DECIATAtION ... e e e e e sre e e anaee e 10
TArGET DECIAIATION.cei ittt 10
Address and Data WIdtNS ..o 10
PEAK BANUWITLN ...t e e e 11
BUISE SIZE ..ottt e e e e e ettt e e e e e e e e e e e e e e eaa e s 11
OUTSTANATNG TIrANSACHONSevviieiiiiiee ettt e eee e e e e e e e et e e e e ebae e e e eenreeeeens 11
FESPONSE DEIAYS ...t e e e e e e e e 12
AGUIESS SPACES ...ttt b e e e e e es e bbb e nnnn e e e 12
Declaring an Address Map and Target RANGES.ccuuouiiiiiiiiiiieiee et 12
Referencing an Address Map in an Initiator Declarationccccccccvvvvviiviiiiiiciiieiieeieeee, 12
Referencing an Address Range in a Target Declarationccccccvveeiiiiiieveeiiiciiine e 13
Defining Connections between ENAPOINTSuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniieiniieeeees 13
MOAES OF OPEIALION ...ttt e e e e e e e e et e e e e e e e e e neeeaeeas 13
Different Directions, Different REqQUIrEMENLSccevviiiiiiiiiiiiiieeeeeeee e 13
YY1 (o g 1T o T = (= o3 16
Network ROUNALIP LAENCYccoiieiiiiiei et e e e e et s s e e e e e e e ae e e e e e eeeeennes 16
S (T g T R Lo T U g Lo 1] I = (=Y o o3 17
Setting Optimization Prioriti€S. ... 17
Over-Provisioning and Dealing with Uncertaintyccccccciviiiiiiiiiee 18
Area and POWET SEAtEMENTSuuuiuiiiiiiiiiiiiiiiiiiiiieiiiiaaeeeeeeaea e aneeeeeeeeearneeenes 18
A A STALEIMENT. ..ttt e ettt e e e et et e e e e e et et e e e b e e e e e e e e rnaa s 18
POWE T SEATEIMIENL ...ttt e e ettt e et e e e e e e ee e ettt s e e e e e eeeasbbaa e e e eeaeeeennes 19
EXAMPIE CSL Fil@ ..ttt nnennnes 20
First Placement Estimator (FPE) CONSIIUCESuuuuiuiiiiiiiiiiiiiiiiiiiiiiiiiiininiiiiieenees 24
Describing Physical AtIrTDULESuuiiiiiiiiiiiiiiiiiiiiiiiii e 25
- 1 o - SRR 25
o1 o I ol 1 o Vo OSSR SRRSO 26
F- K] 01T ok ol o= K e o T PR OPPRP 26
DT OCK Y P ..o 27
Lo Lo of o] o 1 o 1 ST OURTUPSPROPN 28

(v1.3, 31-OCT-2008) www.silistix.com

Silistix

endpoint_ar@a_UtTiTiZatTON ..o 28
o1 1 o RSP PPPOPSPPR 28
elasticity_threshold ... 29
Controlling Block Placement and Floor Planningccccccciin, 30
FOrming RelAtiONSNIPSuuiiiiiiiee i e e e e 30
011 PP 30
= o 30
T PO PP TUPPRTT SRR 31
Pin, Pad, Net Connection EXamples..........cooovviiiiiiiiieeee e 31
Relative COOMINALESoceiiiiiiiiieee e 34
ADSOIULE COOTAINALESvtiieiiiee ettt e e e et e e e e e s s e e e e e e e e e e s annnbeeeeeaeeas 35
Example CSL Design (with FPE CONSLIUCES) ..occvviiiiiiiiiiieceiieeeeeeeeee e 35
General Design Methodology ..o 39
Naming/ldentifier CONVENTIONSuuuuiiiiiiiiiiiiiiiiiiiiiibiie bbb eenneenene 40
N[T] o= A @0 T o Y= o | 4 o ¥ o S 41
ALY 101 I 153 (0 1 YU 42
= T=T0 | o= Vo] - 42
DT o] = 1] 1T PSPPI 42

www.silistix.com (v1.3, 31-OCT-2008)

Silistix
Describing a System Using

Connection Specification Language (CSL™)

Introduction

This guide describes how to use the Silistix Connection Specification Language (CSL) to define
communication paths between major hardware blocks in your system. The simple, top-down design
example introduces key CSL language constructs and concepts along the way. The CSL syntax is
relatively easy to learn, especially for those with any prior programming experience.

If you are already familiar with the general CSL language concepts, see General Design
Methodology on page 39 for a convenient reference summary.

After describing your system in CSL, you can quickly evaluate your system, analyze design trade-
offs, and accurately estimate area, performance, and power using the easy-to-use Silistix
CHAINarchitect™ software.

Include Target Technology Library

A key component in the Silistix technology is a library of targeted, pre-designed, pre-characterized,
and pre-verified hard macro functions that implement the proven CHAIN Network-on-Chip (NoC).
These macros, packaged as a library, are specific to a semiconductor fabrication vendor and a
process technology node.

Because these library functions are already mapped to the targeted process technology, the Silistix
CHAINworks software provides predictable timing, power, and area estimates.

Table 1 lists the “generic” technology libraries available as of July 2008. Other libraries have been
specifically developed for proprietary “captive” semiconductor facilities at major semiconductor and
systems companies.

Table 1: Silistix Target Technology Libraries (July 2008)

Fabrication Process Library Vendor/
Vendor Node Process IP Library Library Name
— 90 nm — Silistix Generic Silistix_90nm_Generic
130 nm 130G Artisan Sage TSMC130G_Artisan_Sage
TSMC 90 nm 90G Artisan Sage TSMCI90G_Artisan_Sage
65 nm 65G Artisan Advantage | TSMC65G_Artisan_Advantage
UMC 130 nm 130E Artisan Metro UMC130E_Artisan_Metro
(v1.3, 31-OCT-2008) www.silistix.com

© 2007-2008 by Silistix UK Ltd.

http://www.silistix.com

Silistix

System-Level Description

Figure 1 represents a top-level block diagram of a typical system-on-a-chip (SoC) application. The
system consists of multiple clock domains, each highlighted in a different color. Each domain is
controlled by an independent clock input, each operating at its own inherent frequency.

Embedded within each domain is one or more hardware block such as CPUs, DSPs, memory, etc. In
the CSL language, each of these blocks represents a potential endpoint, when connected together

at the chip level using the CHAIN network.

Figure 1: System-level block diagram

— system -
domain]
7/
endpoint {/
P> : endpoint
] <
/
/
endpoint { domain
— > /’
//
endpoint endpoint
domain > (>
I

Figure 2 demonstrates these CSL system-level language concepts.

The Tibrary statement declares that the target technology; in this case, the Silistix generic
library. Table 1 lists the other available options.

The system statement declares the name of the system.

Each domain statement declares the name of the individual clock domain and specifies the

native operating frequency in MHz.

www.silistix.com (v1.3, 31-OCT-2008)

Silistix

Figure 2: CSL Code Snippet Demonstrating #include, system, and domain

CSL keywords and concepts demonstrated below:
library
system
domain
comments, both single- and multiple-Tine

NN
W

// Target technology Tibrary
Tibrary Silistix_90nm_Generic ;

system my_system
domain cpu_domain (400 MHZz)

Figure 3
Y // end cpu_domain

domain memory_domain (133 MHZz)

{

Y // end memory_domain

domain communications_domain (155.5 MHZz)

Y // communications_domain

}
Endpoints

An endpoint is a functional block within a clock domain that communicates to other endpoints in
the system, either within the same clock domain or to endpoints in other clock domains. For each
endpoint, describe the fundamental characteristics of the connection. Figure 3 provides an example.

Adapter Interface Protocol

Within a domain, each connection endpoint uses a local or native interface protocol, as illustrated in
Figure 4. For example, a wide variety of IP functions use one of the ARM AMBA interface
protocols (AXI, AHB, APB) while others might employ the Open Core Protocol (OCP).

The Silistix library contains adapter blocks that connect directly to the Silistix network. The IP
block converses directly with other endpoints in the system using its native protocol. The adapter
layer converts the protocol to Silistix network packets via a gateway.

Similarly, at other endpoints on the network, other adapters connect the Silistix network to other IP
blocks, each supporting their own native protocol. In Figure 4, one IP block, using the ARM AXI
bus protocol communicates via the Silistix network to another IP block that uses the Open Core
Protocol (OCP).

The Silistix protocol adapter both connects an IP block to the Silistix network and provides protocol
translation between endpoints on the network.

(v1.3, 31-OCT-2008) www.silistix.com

Silistix

Figure 3: Endpoint Code Snippet (expands concepts in Figure 2)
P ol b S ol S ol S ol b o i Ko i KR ol i K ol Sl KR ol Sl KR ol S b ol S i b o i S e el e St b ol

CSL keywords and concepts demonstrated below:

protocol, initiator, target

address, data, bits, bytes

peak, nominal, burstsize, MBs, Mbs, GBS, Gbs
address map, address range

..outstanding, write response, read response
comments, both single- and multiple-Tine

’ 5k :(‘:(‘/
Figure 2

CPU_endpoint {
protocol = "AXI"; // See Table 2 for options

initiator CPU_initiator {

address = 32 bits;

data = 32 bits;

peak = 1600 MBs; // only if less than theoretical
burstsize = 32 bytes;

address_map = CPU_address;

outstanding = 8;

write_response = 15 ns;

read_response = 30 ns;

Y //end cpuU_initiator

target CPU_mailbox {

address = 4 bits;

data = 16 bits;

burstsize = 16 bytes;

address_range = COMM_address.CPU_mailbox;

} // end cpPu_mailbox target

Y // end cpu_endpoint

Figure 4. Protocol Adaptor Connects an Endpoint to the Silistix Network

Endpoint

Custom Logic or
3"-party
Intellectual
Property (IP)
Block

Interface protocol

“AXI”

Adapter

www.silistix.com (v1.3, 31-OCT-2008)

Silistix

For each endpoint, declare the native bus protocol used locally. The currently-supported protocols
and adapters are listed in Table 2. Figure 3 provides a syntax example. In the example, the CPU
endpoint includes both an initiator and a target. The endpoint uses an AMBA AHB interface
protocol. The initiator sends addresses using its own address map. The CPU’s target interface
responds to addresses from a different endpoint.

Table 2: Supported Adapter Interface Protocols

Protocol Name Description

CGP Chain Gateway Protocol. Direct access onto the CHAIN network.
AHB AMBA High-speed Bus

APB AMBA Peripheral Bus. Only target endpoints are supported.

AXI AMBA AXI Bus

OCP Open Core Protocol

Port and Endpoint Basics

An endpoint supports one or more communication ports. Each port is an initiator, a target,
or both. Figure 5 illustrates the role of both initiator and target within a transaction.

An initiator, as the name implies, begins and controls a transaction with a target endpoint.
Typically, a transaction involves sending addresses or commands to the target endpoint. A
transaction’s command propagates from the initiator to the target over the command path.

A target responds to the transaction by decoding the address and command presented by the
initiator and then either sends data back to the initiator or accepts data from the initiator. The
communication transfer from the target back to the initiator, over the response path, completes the
transaction. The target responds to an initiator’s command either by returning read data or
acknowledging a write operation.

Figure 5: Initiator and Target in a Transaction
initiator target

Decode
Range

r\
Address y
r\

Data I/

a) An initiator begins atransaction by sending a command on the
Address and Data bus.

initiator target

% N
K Data/Response |/

b) If the transaction is to its decoded address range, the target responds
by sending or accepting Data to/from the initiator.

(v1.3, 31-OCT-2008) www.silistix.com

Silistix

initiator Declaration

An initiator declaration, depending on the adaptor protocol, may use the following fields. Specific
protocol adapters support additional options.

* A name or identifier

* The address port width

* The data port width

» The address_map that the initiator uses to reference the attached targets

= Optionally, if peak transfer rate supported by the IP port is lower than the theoretical peak
bandwidth (frequency x data width), then specify the port’s peak transfer rate.

= Optionally, the maximum data burstsize
= Optionally, the maximum number of outstanding transactions allowed between operations
= Optionally, the response delay of the initiator between transactions

= Specify any protocol-specific attributes required for the interface. Consult the CHAIN Network
Adapter User Guide for more information.

target Declaration

= A target declaration, depending on the adaptor protocol, may use the following fields. Specific
protocol adapters support additional options.

= A name or identifier

* The address port width

* The data port width

» The address address_range within an address map, to which the target responds

= Optionally, if peak transfer rate supported by the IP interface is lower than the theoretical peak
bandwidth (frequency x data width), then specify the interface peak transfer rate.

= QOptionally, the maximum data burstsize
= Optionally, the response time of the target to an initiator command

= Specify any protocol-specific attributes required for the interface. Consult the CHAIN Network
Adapter User Guide for more information.

Address and Data Widths

For each endpoint, define the width of the address port and the data port. This requirement
applies to both initiators and targets.

Define the address and data port width as bits. Figure 3 provides an example. The address
port requires enough bits to cover the specified address range, not the maximum address range
supported by IP block contained within the endpoint.

The data port width is the maximum width of any individual data transfer.

Depending on the interface protocol used in the endpoint, there may be additional limitations on the
data and address width. For example, the data width for an AMBA APB interface must be 8, 16, or
32 bits wide. Similarly, the APB address bus width must be a multiple of 8. The CHAINarchitect

www.silistix.com (v1.3, 31-OCT-2008)

Silistix

software reports any mismatch between the requested address or data width and those supported by
the interface protocol.

peak Bandwidth

The optional peak bandwidth for an endpoint is specified using a number of bits or bytes per
second. Table 3 lists the units required when specified bandwidth. If the peak bandwidth is not
specified, then the CSL compiler calculates the peak bandwidth from the connections to the port
(frequency x data width). Consequently, the peak transfer rate need only be specified if the endpoint
is not capable of carrying the theoretical peak bandwidth to and from the port (frequency x data
width).

o The bandwidth units are case sensitive. Lower-case ‘b’ represents bit; upper-case ‘B’
represents byte.

If the peak transfer rate for the endpoint port is specified in the CSL, CHAINarchitect ensures that
the combined network transfer rate is less than the specified limit. If the calculated network traffic is
greater than the specified peak transfer rate, then CHAINarchitect issues an error.

Table 3: CSL Bandwidth Units

Unit Description

Mbs Megabits per second. 1M = 1024K = 1,048,576 bits per second.
MBs MegaBytes per second. 1M = 1024K = 1,048,576 bytes per second.
Gbs Gigabits per second. 1G = 1024M = 1,048,576K = 1,073,741,824 bits per second.
GigaBytes per second. 1G = 1024M = 1,048,576K = 1,073,741,824 bytes per
GBs
second.
Burst Size

The burstsize specifies the size of the longest transaction to be supported by the endpoint,
measured in either bits or bytes.

outstanding Transactions

The outstanding declaration defines the maximum number of transactions that can be in flight
between operations. Essentially, this defines how many transactions can be in the network before
requiring acknowledgement. By default, this set to 1. The AHB Adapter Interface Protocol, for
example, only supports a single outstanding transaction. Consult the adapter documentation for
additional information.

(v1.3, 31-OCT-2008) www.silistix.com 11

Silistix

response Delays

The response declaration defines how the initiator or target endpoint responds to read and write
transactions. The CSL Compiler software uses the defined response value to calculate the system
roundtrip latency and bandwidth.

The definitions for write and read responses vary between initiator and target, as shown in Table 4.

Table 4: Write and Read Response Definitions for Initiator and Target Endpoints

Declaration Initiator
write_response Tu.rnaround time between The delay to return a write
write transactions response

Turnaround time between

I read_response read transactions

The delay to return read data I

Address Spaces

Each initiator has a defined address_map. The address map describes the address decoding to the
various targets connected to the initiator. Each decoded target address is specified as an
address_range within the address map, as shown in Figure 6.

Each address range has a unique name within the address map, plus a starting and ending byte
address. Ranges within an address map cannot overlap, although a target can respond to multiple
address ranges, as shown in Figure 7.

Declaring an Address Map and Target Ranges

The address map and range must be declared before it is referenced in an endpoint declaration, as
shown in Figure 6.

F|gure 6 CSL Code Smppet Demonstratmg add ress map and r'ange

CSL keywora’s ana’ concepts demonstratea’ be 70W
address map
address range

// address map for the CPU (see Figure 14)
address_map CPU_address

range comm_mailbox 0x0000000 .. 0x00001ff;
range external_sdram 0x1000000 .. Ox1ffffff;

Referencing an Address Map in an Initiator Declaration

An address_map is required for each initiator. Essentially, the address map represents the
initiator’s view of the system. All initiators in a system can share a single, common address map or
each initiator can have its own independent, locally-referenced address map. However, an initiator
can only have one address map.

For an example, see the address_map declaration for the CPU_endpoint initiator in Figure 3.

12 www.silistix.com (v1.3, 31-OCT-2008)

Silistix

Referencing an Address Range in a Target Declaration

As highlighted in Figure 7, a target can respond to a single address range, multiple address ranges,
and even multiple address ranges from different address maps. If declaring multiple target address
ranges, enclose the comma-separated list with braces or curly brackets ({, }). Each
address_range reference has the following form.

<address_map_name> .<address_range_name>
Figure 7: Example Target Address Map Reference

/7 example of single target address range
target CPU_mailbox {

address_range = COMM_address.CPU_mailbox;
Y // end cpu_mailbox target definition

s/ example of multiple target address ranges
target SDRAM_target {

address_range = {CPU_address.external_sdram,
COMM_address.external_sdram};
} // end SDRAM_target definition

Defining Connections between Endpoints

After defining the system, clock domains, endpoints, and initiator and target endpoints, then specify
the connections between initiators and targets. To specify the connections, answer the following
guestions about your system.

= Which initiators and targets actually communicate in the system?
= How do the communications requirements change during different modes of operation?

= For each initiator-target pair, what are the roundtrip bandwidth and latency requirements when
the initiator sends traffic to the target (initiator - target)?

= For each initiator-target pair, what are the bandwidth and latency requirements when the
initiator receives traffic from the target (initiator < target)?

Modes of Operation

Virtually all SoCs have inherent modes of operation. For example, many SoCs have a reset mode, a
low power mode, and a high performance mode. Some designs may have dozens of operating
modes. Within a CSL file, use a separate mode statement to specify the bandwidth and latency
requirements for each exclusive operating mode. CHAINarchitect and CSL Compiler leverage this
information to create a properly-provisioned network.

Figure 8 shows an example of how to declare a mode and the connections within each mode.

Different Directions, Different Requirements
The bandwidth and latency requirements for a connection are typically directional.

In CSL descriptions, the path from initiator - target is typically a completely separate network path
than the initiator < target path. This split network architecture offers several advantages; each path
has different topologies and consequently different bandwidth and latency characteristics.

= The initiator - target command path need not be idle while waiting on the response of a
previous transaction.

(v1.3, 31-OCT-2008) www.silistix.com

13

Silistix

= The topology of the two networks can be very different, each optimized for its bandwidth and
latency requirements. Typically, the initiator - target path and the initiator < target paths are
very different from one another. Optimizing each separately often saves silicon area, power, and
likely wire congestion as well.

The CSL language uses five connection operators, shown in Table 5. Two operators define roundtrip
network paths. The remaining three operators specify unidirectional connections. The source and
destination of the connection are specified in the form
<endpoint_name>.<initiator_name> and <endpoint_name>.<target_name>.

Table 5: CSL Connection Operators

Connection Connection Specified

Function

Type Operator Path
Specifies roundtrip connection from an initiator, to a
- target, and write or read response from the target
back to the initiator, including the write or read
. . response delay of the target.
Roundtrip Figure 10 Specifies roundtrip connection from a target, to an
<= initiator, and write or read response from the target
back to the initiator, any specified separation between
initiator transactions.
Uni -> Specifies connection from an initiator to a target
ni-
dire(cti?nal <- Figure 9 | Specifies connection from a target back to an initiator
no
recommended) <> Specifies symmetric connections between initiator and
target.

Roundtrip Connection Operators
In most applications, connections are specified using System Roundtrip Latency and bandwidth.

The => operator specifies roundtrip connections originating from the initiator to the target, including
target response time. This operation is typically a write operation. The <= operator specifies
roundtrip connections from the target to the initiator, including any initiator delays between
transactions. This operation is typically a read operation.

Unidirectional Connection Operators

Unidirectional connections are also allowed, but are not recommended except for specific advanced
application cases. A unidirectional connection operator specifies the Switching Latency and
bandwidth in a single direction between the two endpoints.

A third operator, not generally recommended, defines symmetric connections between the initiator
and the target.

www.silistix.com (v1.3, 31-OCT-2008)

Silistix

Figure 8: Mode and Connections Code Snippet (expands concepts in Figure 2 and Figure 3)

CSL keywords and concepts demonstrated below:
. .mode statement
endpoint.initiator and endpoint.target syntax
connections from initiator to target =>)
connections back to initiator from target (<=)
bandwidth and Tatency specifications

mode high_speed {
// Define path from CPU to SDRAM
CPU.CPU_initiator => SDRAM.SDRAM_target
(bandwidth=133 MBs, latency=90 ns);

// Define path to CPU from SDRAM
CPU.CPU_initiator <= SDRAM.SDRAM_target
(bandwidth=333 MBs);

Y // end high_speed mode

mode low_power {
// Define path from CPU to SDRAM
CPU.CPU_initiator => SDRAM.SDRAM_target
(bandwidth=10 MBs);

// Define path to CPU from SDRAM
CPU.CPU_initiator <= SDRAM.SDRAM_target
(bandwidth=10 MBSs);

Y // end Tow_power mode

CSL Example: Roundtrip Connections

In the example system illustrated in Figure 14, the CPU fetches code from an external SDRAM
memory. Consequently, the CPU € SDRAM path has significantly higher bandwidth requirements
than the CPU =» SDRAM path. Figure 8 provides a code snippet demonstrating how these
connections are specified.

In CSL, bandwidth has the usual definition — the amount of data transferred over a defined time
period. The CSL bandwidth units are listed in Table 3 on page 11.

Latency is a critical architectural parameter that can be very difficult to manage with legacy bus
architectures. In the CSL description, the specified latency is the maximum acceptable System
Roundtrip Latency. The system roundtrip latency includes the Silistix Network Roundtrip Latency
plus any specified response Delays. The CSL connection specification defines the maximum
acceptable system roundtrip latency. The CHAINarchitect software reports both the network and
system roundtrip latency values as applicable.

(v1.3, 31-OCT-2008) www.silistix.com

Silistix

Switching Latency

As shown in Figure 9, switching latency is the total network flight time in a single direction.
Switching latency is a fundamental component of the Network Roundtrip Latency and the System
Roundtrip Latency. The switching latency includes the time to ...

= convert from the interface protocol of the initiator IP block

= serialize the packet

= transport the package over the Silistix network

= de-serialize the packet

= convert the packet to the interface protocol used on the target IP block.

The switching latency depends on the traffic direction; it is not the total roundtrip time.

Figure 9: Switching Latency is Total Network Flight Time in a Direction

Packetization
* Protocol conversion
® Serialization

De-packetization

® De-serialization

® Protocol
conversion

Network Roundtrip Latency

Network roundtrip latency is the sum of the command path Switching Latency and the response path
Switching Latency over the Silistix network, as shown in Figure 10. Because the connection from
the initiator to the target is specified separately from the connection from the target back to the
initiator, both paths are optimized independently and may have very different network paths.

The network roundtrip latency is the total of the command and response paths, but does not include
the unpredictable delays incurred within the initiator or target IP. The network roundtrip latency is
highly predictable using the Silistix CHAINarchitect software. The resulting Silistix network is pre-
implemented, with portions built using pre-characterized hard IP blocks. Consequently, the Silistix
CHAINarchitect software provides highly-accurate timing information.

However, these IP delays can be specified by defining the write_response and
read_response delays for the initiator and target ports.

www.silistix.com (v1.3, 31-OCT-2008)

Silistix

Figure 10: Network and System Roundtrip Latency
| Command Path >|

Packetization
® Protocol conversion
* Serialization

De-packetization
® De-serialization

® Protocol
conversion

}4 Response Path |
I
Command Path network latency Network Roundtrip Latency
+ Response Path network latency + Response delay
Network Roundtrip Latency System Roundtrip Latency

System Roundtrip Latency

As shown in Figure 10, system roundtrip latency includes the Network Roundtrip Latency plus any
specified write_response or read_response delay. The CHAINarchitect software easily
predicts the Silistix network roundtrip latency. However, any delays incurred within the initiator or
target IP blocks must be specified in the CSL file because CHAINarchitect cannot predict these
delays.

Setting Optimization Priorities

CSL allows you to set relative latency, power, and area priorities for later processing by the
CHAINworks software tools. This capability helps achieve a satisfactory balance between these
often-conflicting design requirements. As shown in Figure 11, set the optimization level to ‘1’ for
the highest-priority requirement and ‘3’ for the lowest-priority requirement.

Optimization can be set for the entire system or for specific connections.

Flgure 11 CSL Code Snlppet Demonstratlng 0pt1 m1 ze .

A A S S
#* CSL keywora’s ana’ concepts demonstratea’ be 70W
gt opt7m7ze 7atency, area ana’ power syntax

‘// set 0pt7m7zat7on pr70r7ty (1—h7ghest 3—7owe5t)
optimize_area=1;

optimize_1atency=2;

optimize_power=3;

(v1.3, 31-OCT-2008) www.silistix.com

17

Silistix

Over-Provisioning and Dealing with Uncertainty

In some systems, it may be difficult to accurately specify bandwidth and latency requirements. The
CSL language allows you to easily over provision requirements using a
utilization_threshold setting.

By default, threshold is set to 1, meaning that the CHAINworks software will build networks that
can approach the full specified limits. For example, if a particular latency setting is set to 7 ns, then
CHAINworks will build connections with latency right up to the limit. Setting threshold to a lower
number over-provisions the actual bandwidth and latency limits as shown in Equation 1 and
Equation 2. For example, setting utilization_threshold = 0.8 reduces a specified 7 ns
latency t0 0.8 x 7 ns = 5.6 ns.

Equation 1
Specified Bandwidth

utilization_threshold

Effective Bandwidth =

Equation 2
Effective Latency = Specified Latency x utilization_threshold

The CSL code snippet in Figure 12 shows how to set the utiTization_threshold.

F|gure 12 CSL Code Smppet Demonstratlng th r'esho'ld
/:(-:(‘:(“'“’-"‘:":"
#% CSL keywora’s ana’ concepts demonstrated be 70W
ut777zat70n thresho70’

ut1'|1zat1on thr‘esho'ld 0 6 // low confidence in T1imits

utilization_threshold 1.0; // high confidence in Timits

An alternate interpretation of the threshold specification is to view it as a confidence level. If you
are confident of the system’s bandwidth and latency limits, set utilization_threshold high
(0.8t0 1.0). If confidence is lower, set utilization_thresholdto 0.6 to 0.8.

The utilization_threshold can be set for the entire system or for specific connections.

Area and Power Statements

The area and power statements provide the total area and power budgets provided in the system
design. These values are used by the Silistix CHAINarchitect and CSL Compiler software to report
percentages of total die area utilized by the interconnect logic and the miniscule amount of additional
power required to implement the CHAIN network.

area Statement

Use the area statement to specify the total die area target of your design or for an individual
endpoint. It is often more accurate to represent area at the endpoint level whenever possible.
CHAINarchitect and the CSL Compiler use this value to determine the percentage of total die area
utilized by the interconnect logic. It is also used for floor plan estimation purposes. If the area
statement is specified, then the value given takes precedence over any area values set for endpoints.

www.silistix.com (v1.3, 31-OCT-2008)

Silistix

@ See the area section on page 25 on how to use this command with the First Placement
Estimator (FPE) tool.

Figure 13 provides an example of how to use the area statement to specify total silicon area
occupied by the system, including the area occupied by the CHAIN network.

Figure 13: CSL Code Snippet Demonstrating area and power Statements

area
power

b

CSL keywords and concepts demonstrated below:
o area and power syntax

48.8 mm2; // Total silicon area, including CHAIN network
= 250.0 mw; // Total system power, without CHAIN network

The area statement has two possible unit values, as shown in Table 6. The specified technology
library contains the conversion information between these two unit values. See
endpoint_area_utilization on page 28 for more information on how these two unit
systems interrelate.

Table 6: Area Statement Units

Description

mm?2

Square millimeters of silicon.

kgates

Thousands of gates.

power Statement

Use the power statement to specify the total power consumed by your design or for a specific
portion of the system. CHAINarchitect and the CSL Compiler use this value is used to report the
total system power, including power consumed by the interconnect logic. If the power statement is

specified, then the value given takes precedence over any power values set for endpoints.

Figure 13 above provides an example of how to use the power statement to specify total system

power consumed by the system, excluding the power consumed by the CHAIN network.

The power statement supports the unit values shown in Table 7. The “power per megahertz” units

are primarily used to specify sub-domains within the system.

Table 7: Power Statement Units

Unit Description

uw microwatts

mw milliwatts

Watts Watts
UWpMHZ g\(;ﬁ:(;\i/:/]atts per megahertz using the clock frequency defined for the associated
MWpMHz (rjnllllwgtts per megahertz using the clock frequency defined for the associated
omain

WattpMHz | Watts per megahertz using the clock frequency defined for the associated domain

ﬂ It is typically more accurate to represent power at the endpoint level whenever
possible.

(v1.3, 31-OCT-2008)

www.silistix.com

19

Silistix

Example CSL File

Figure 14 presents a top-level block diagram of an example system. The system includes a CPU, a

communications controller,
communications controller.

registers.

and a shared SDRAM memory serving both the CPU and

The CPU and the communications controller swap data via mailbox

Figure 14: Block Diagram of Example System

CPU COMM Controller
CPU Address Map Address jm = == = Address COMM Address Map
] Ox4ffffff
Data Out [— Data Out
OX1FFFFef Datal : bata External
External atain ata In SDRAM
SDRAM I. cobdaw ‘
(400 MHz) :I Mailbox 0x2000000
0x1000000 1 Target
|
Ox1ff Oxff
” CO'MM Mailbox ! C'PU
X0 mailbox Target : (133 MH2) mailbox 0x0
|
|
A A 4

SDRAM Target
(155.5 MHz)

Figure 15 provides a complete CSL description for the example system shown in Figure 14.

Figure 15: Complete Example CSL File
/7 Target technology Iibrary
Tibrary Silistix_90nm_Generic ;

system my_system {

// set optimization priority (I1=highest, 3=]owest)
optimize_area=1;

optimize_latency=2;

optimize_power=3;

area = 48.8 mm2;
power = 250.0 mw;

// Total silicon area, including CHAIN network
// Total system power, without CHAIN network

// set threshold on how close the actual values approach the
/) specified Timits

// (alternate view): what 7s the confidence in the

Y4 specified 1imits?

utilization_threshold = 90% ;

// address map for the CcPU
address_map CPU_address {
range comm_mailbox 0x0000000
range external_sdram 0x1000000

0x00001FF;
Ox4fFFfff;

www.silistix.com (v1.3, 31-OCT-2008)

Silistix

// address map for the comm controller
address_map COMM_address {
range CPU_mailbox 0x0000000 .. 0x00000ff;
range external_sdram 0x2000000 .. Ox4ffffff;

}

// define each of the various clock domains and endpoints
domain cpu_domain (400 MHz) {
cpu {
protocol = "AXI"; // "AHB", "APB", "Ax1", "ocp"

initiator CPU_initiator {
address = 32 bits ;
data = 32 bits ;
eak = 1600 MBs ;
urstsize = 32 bytes ;
address_map = CPU_address ;
outstanding = 8;
write_response = 2.5 ns ;
read_response = 2.5 ns ;
// AXI protocol-specific options
axi_id_bits = 4 ;
} // end cpPU_initiator

target CPU_mailbox {
address = 8 bits ;
data = 16 bits ;
burstsize = 16 bytes ;
address_range = COMM_address.CPU_mailbox ;
// AXI protocol-specific options
axi_id_bits = 1 ;
axi_write_interleave_depth = 1 ;

} // end cpU_mailbox target

} // end cpPu endpoint
Y // end cpu_domain

domain memory_domain (333 MHz) {
SDRAM {
protocol = "AHB"; // "AHB", "APB", "Ax1", "ocP"

target SDRAM_target {
address = 32 bits ;
data = 32 bits ;
burstsize = 128 bytes ;
address_range = {CPU_address.external_sdram,
COMM_address.external_sdram}

write_response = 25 ns ;
read_response = 50 ns ;

Y // end SDRAM_target

Y // end SDRAM endpoint
Y // end memory_domain

(v1.3, 31-OCT-2008) www.silistix.com

21

Silistix

domain communications_domain (180 MHz) {
comm {
protocol = "AHB"; // "AHB", "APB", "AxI", "ocrP"

initiator communications_initiator {
address = 32 bits ;
data = 32 bits ;
burstsize = 32 bytes ;
address_map = COMM_address ;
ahb_version = lite ;

Y // end communications_initiator

target comm_mailbox {
address = 16 bits ;
data =16 bits ;
burstsize = 64 bytes ;
address_range = CPU_address.comm_mailbox ;
write_response = 10 ns ;
read_response = 5 ns ;
ahb_version = Tite ;

Y // end comm_mailbox

Y // end comm endpoint
Y // end communications_domain

// Define operating modes and connections between endpoints
utilization_threshold = 75% ; // Jower confidence in Timits

mode high_speed {
// connections between CPU and SDRAM
CPU.CPU_initiator => SDRAM.SDRAM_target
(bandwidth=133 MBs, latency=90 ns) ;

CPU.CPU_initiator <= SDRAM.SDRAM_target
(bandwidth=333 MBs) ;

/7'COnnectiqn5 @etwegn_a@ww controller and SDRAM
COMM. communications_initiator => SDRAM.SDRAM_target
(bandwidth=50 MBs) ;

COMM. communications_initiator <= SDRAM.SDRAM_target
(bandwidth=133 MBs) ;

/V'COnnection between CPU and comm controller mailbox
CPU.CPU_initiator => COMM.comm_mailbox
(bandwidth=0 MBs) ;

CPU.CPU_initiator <= COMM.comm_mailbox
(bandwidth=0 MBs) ;

// Connection between COMM and CPU mailbox
COMM. communications_initiator => CPU.CPU_mai Tbox
(bandwidth=0 MBs);

COMM. communications_initiator <= CPU.CPU_mailbox
(bandwidth=0 MBs);
Y} // end high_speed mode

www.silistix.com (v1.3, 31-OCT-2008)

Silistix

utilization_threshold = 85% ; / confidence greater for
// following modes

mode Tow_power {
// connections between CPU and SDRAM
CPU.CPU_initiator => SDRAM.SDRAM_target
(bandwidth=10 MBs) ;

CPU.CPU_initiator <= SDRAM.SDRAM_target
(bandwidth=10 MBs) ;

// Connections between COMM controller and SDRAM
COMM. communications_initiator => SDRAM.SDRAM_target
(bandwidth=0 MBs) ;

COMM. communications_initiator <= SDRAM.SDRAM_target
(bandwidth=0 MBs) ;

/7’COnnegtfop between CPU and comM controller mailbox
CPU.CPU_initiator => COMM . comm_mai 1box
(bandwidth=0 MBs) ;

CPU.CPU_iqitiator <= COMM.comm_mailbox
(bandwidth=0 MBs) ;

/7’COnnectiqn bgtweep comm and cpPU mailbox _
COMM. communications_initiator => CPU.CPU_maiTbox
(bandwidth=0 MBsS);

COMM.commgnications_initiator <= CPU.CPU_mailbox
(bandwidth=0 MBs);

Y // end Tow_power mode

// connection between CPU and cOMM controller mailbox
utilization_threshold = 95%; // high confidence in Timits

mode reset {
// connections between CPU and SDRAM
CPU.CPU_initiator => SDRAM.SDRAM_target
(bandwidth=33 MBs) ;

CPU.CPU_initiator <= SDRAM.SDRAM_target
(bandwidth=33 MBs) ;

// Connections between COMM controller and SDRAM
COMM. commgm cations_initiator => SDRAM.SDRAM_target
(bandwidth=0 MBs) ;

COMM. communications_initiator <= SDRAM.SDRAM_target
(bandwidth=0 MBs) ;

(v1.3, 31-OCT-2008) www.silistix.com 23

Silistix

optimize_area=1;
optimize_power=2;
optimize_latency=3;

// Connection between CPU and COMM_controller mailbox
CPU.CPU_initiator => COMM.comm_mailbox
(bandwidth=5 MBs) ;

CPU.CPU_i r:n' tiator <= COMM.comm_mailbox
(bandwidth=5 MBs) ;

// Connection between COMM and CPU mailbox
COMM. communications_initiator => CPU.CPU_mailbox
(bandwidth=2 MBs, latency=150 ns);

COMM. communications_initiator <= CPU.CPU_mailbox
(bandwidth=2 MBs, latency=110 ns);

} // end reset mode

// Add "--define:INCLUDE_SCSL" to CSL Compiler options to
// include structural CSL file during NPV validation

#if defined (INCLUDE_SCSL)

#include "struct_csl.csl1"

#endif

Y // end system

First Placement Estimator (FPE) Constructs

The previous sections described how to construct an example system using a Silistix network. All
the CSL constructs used so far describe various communication and connectivity aspects of the
design. The following sections use additional CSL constructs to describe the physical attributes of
the design. These constructs are necessary to use the First Placement Estimator (FPE) tool, which is
part of CHAINarchitect.

These additional CSL constructs perform one of the two functions, as further described in the
sections below.

= Describing Physical Attributes
= Controlling Block Placement and Floor Planning

With these language constructs and the FPE tool, the CHAINarchitect software generates a more
accurate model of the entire system, including any placement-induced affects. For example, without
FPE, the CHAINarchitect software is unaware of actual physical placement and evaluates network
performance assuming that all the network components are physically placed at their maximum
distance or hop length. However, due to real physical placement constraints, some of the network
connections may exceed this maximum hop length. With FPE, the CHAINarchitect software
automatically inserts the required number of “pipelatch” components to re-buffer network
connections, shortening the hop length between components. These pipelatch components maintain
bandwidth regardless of physical separation while introducing only minor increases in latency for the
connection. With FPE, the CHAINarchitect software generates a report file that accounts for these
placement-induced effects, including the pipelatch components. The FPE tool also generates an
initial placement of the design that is used with synthesis or physical placement. Each initial
placement can be evaluated and optimized by adjusting the CSL description and changing various
options available in CHAINarchitect.

www.silistix.com (v1.3, 31-OCT-2008)

Silistix

For additional information on running the First Placement Estimator (FPE) tool, see the “Generate
First Placement Estimation” section in Building and Analyzing On-Chip Networks using
CHAINarchitect user guide.

Describing Physical Attributes

The CSL language constructs in this section describe the physical attributes of the system or
individual endpoints.

darea

The area statement defines the area of an individual IP block or for the entire system. When used
within an endpoint, the area statement specifies the silicon area consumed by the IP block. When
describing the area of the entire system, the area statement defines just the core logic area and not
the pad ring that surrounds the core logic, as shown in Figure 16.

Figure 16: Area, pad_ring, and aspect_ratio

L ; J
3 width 1

-

. width
aspect_ratio = - .
P height K— pad_ring
- Core Logic

<

3 area Connection

< C> pad

———

The Silistix software uses the values specified by the designer when calculating the percentage of
total die area utilized by the interconnect logic. These values are used by the First Placement
Estimator (FPE) tool for floor planning purposes. The area specified for the entire system takes
precedence over the calculated value from the area values set for each endpoint when determining
total area. However, the area values set for the endpoints are still used by the FPE tool.

The area specification uses two possible units. The mm2 unit system measures area in post-layout
square millimeters of silicon for the target process technology. The kgates unit system describes
area indirectly, measured in raw synthesized thousands of gates, pre-layout and without any
consideration for clock trees, reset distribution, etc. This value is most commonly derived by
synthesizing the endpoint with a logic synthesis package and using the reported gate-equivalence.
The specified Silistix target library includes information on how many thousands of equivalent gates
are in a square millimeter of silicon for the target process technology. The
endpoint_area_utilization specification further describes the fraction of the post-layout
area that is occupied by gates, the remainder being wiring.

(v1.3, 31-OCT-2008) www.silistix.com

Silistix

The area statement has the following forms.
area = <value> mm2 ;

or
area = <value> kgates ;
Example
area = 144 mm2; // Die 1is 12 mm on a side, assuming a square die
Example
area = 57.7 kgates; // The IP block is equivalent to 57,700
// gates according to Togic synthesis
endpoint_area_utilization = 80%; // gate area 1s 80% of total
// Total post-Jayout area is 125% of gate area,
// which includes area for wiring
Example
#define CORE_WIDTH_MM 3.2
#define CORE_HEIGHT_MM 4.2
area = (CORE_WIDTH_MM * CORE_HEIGHT_MM) ;
pad_ring

The pad ring surrounds the core logic area as illustrated in Figure 16.

The pad_ring statement specifies the width of the pad ring surrounding the die, which is equal
width around. Any connection pads defined by pad statements reside within this pad ring. The
pad_ring statement has the following form.

pad_ring = <expression> um; // Specified in microns

If no pad_ring is specified, then the Silistix software assumes a 200 micron wide pad ring.
aspect_ratio

The aspect ratio specification describes the shape of the die or IP block. The aspect ratio value is the
width divided by the height, as illustrated in Figure 16. Consequently, a value greater than one
specifies a block that is wider than it is tall as pictured in Figure 17. Conversely, a value less than
one specifies a block that is taller than it is wide. A value of one specifies a perfect square.

The aspect_ratio and the area statements completely specify the shape of the die, endpoint, or
object, which is used by the First Placement Estimator (FPE).

Figure 17: Aspect Ratio Examples
aspect_ratio = 0.5

aspect_ratio = 1.0

aspect_ratio = 2.0

>1 =1 <1l
Wide Square Tall

www.silistix.com (v1.3, 31-OCT-2008)

Silistix

The aspect_rat1io statement has the following form.
aspect_ratio = <value> ; // ratio of (width / height)

If no aspect_ratio is defined, then the Silistix software assumes a ratio of 1.0, which represents
a perfectly square die or IP block.

Example
aspect_ratio = 1.2;

Example

#define CORE_WIDTH_MM 3.2
#define CORE_HEIGHT_MM 4.2
aspect_ratio = (CORE_WIDTH_MM / CORE_HEIGHT_MM) ;

block_type

For the First Placement Estimator (FPE) tool, each endpoint or functional block described in the CSL
source file can be assigned one of four possible block types. The block type indicates how the block
is delivered or described. The various options appear in Table 8. A soft IP block is described as
RTL in Verilog; synthesized; and then placed and routed during physical implementation. A hard
IP block is is a pre-implemented, technology-targeted function complete with physical layout. The
block type also describes whether a block connects to Silistix network or whether is it a stand-alone
terminal function, separate from the Silistix network. If the block type is not defined, then the FPE
software assumes that the endpoint is a soft IP block connected to the Silistix network.

So why describe a terminal function that does not connect to the Silistix network? These terminal
functions exist in the final design and they occupy space in the physical layout. If these terminal
blocks are defined in the CSL, then the FPE software generates a more accurate initial placement and
results in a faster back-end flow. Assign these non-connected blocks a block_type of
soft_terminal or hard_terminal, depending on whether the block is a soft or hard IP block
as described in Table 8. Examples might include a block of memory or a DMA engine driving one
of the endpoints. These terminal blocks can be associated with other blocks as described in
“Forming Relationships” starting on page 30.

Table 8: Block Types

block_type=
Connects to Silistix Does not connect to
Macro Type Character Network Silistix Network
Described in RTL, no
Soft physical placement soft soft_terminal
information
Hard Hz’gﬁyr:iiglr?;;omth hard hard_terminal

The bTock_type statement has the following form.
block_type = <type> ;

Where :
<type>is soft, hard, soft_terminal, or hard_terminal as described in Table 8.
A hard or hard_terminal block type also requires an associated footprint statement.

(v1.3, 31-OCT-2008) www.silistix.com 27

Silistix

Example

Unrelated_soft_IP {
block_type = soft_terminal ;
Y // other JTogic used in design, but not on Silistix network

footprint

The footprint statement specifies the actual name of a hard IP block to be used for placement
and routing. Any IP blocks declared with a block_type of hard or hard_terminal must
have an associated footprint statement. The specified name is used when writing out the placed
design to the DEF file. Subsequently, your preferred ASIC/SoC place and route software will insert
the correct GDSII view from the library based on this name.

The footprint statement has the following form.
footprint = “<name>” ;

Example

sram_block_cpu {
block_type = hard_terminal ;
footprint = "SRAM_DP_32x512" ;

Y // sram block for cPU

endpoint_area_utilization

The endpoint_area_utilization statement defines how an area that is specified in pre-
layout kgates is then converted to post-layout estimates of total die area, measured in mm2. As
shown in Equation 3, the endpoint area utilization is specified as the percentage of the final post-
layout area that is occupied by gates, the remainder filled with wiring. The target technology library
includes a conversion factor that specifies how many thousands of gates fit in a square millimeter of
silicon for the target process technology. The endpoint_area_utilization statement
modifies the values defined in the target technology library, allowing modifications for a particular
tool flow, level of expertise, or fabrication contstraints.

The endpoint_area_ut1ilization statement has the following form.
endpoint_area_utilization = <expression> %;

Example:

endpoint_area_utilization = 80%; // gate area is 80% of total
// Total post-layout area is 125% of gate area

Equation 3
kgates X (Library Conversion Factor)

endpoint_area_utilization

Post-layout mm2 =

halo

As shown in Figure 18, a “halo” is a region surrounding a hard IP block where other gates or blocks
cannot be placed, thereby providing space for wire routing. The halo statement specifies the
percentage of the hard macro area allocated to wiring to and from the hard IP block. For example,
halo = 5% creates a region surrounding the block equal to 5% of the area of the block. This value
can be specified for any endpoints with block_type = hard or block_type =
hard_terminal. The halo value also applies to the Silistix networks elements that are hard IP
blocks.

www.silistix.com (v1.3, 31-OCT-2008)

Silistix

Figure 18: Halo around Hard IP Block

/\/ Halo (area available for wiring to block)
Halo area = halo x area

Hard IP Block

block_type=hard or
=hard_terminal

The halo statement has the following form.
halo = <expression> %;

If no halo value is specified, then the Silistix software uses a halo of 5%.
elasticity_threshold

Before First Placement Estimation, the Silistix software estimates timing based on the maximum
network hop length, which is determined by the selected technology library. The maximum hop
length is the maximum wire length allowed between network components. Connections longer than
the maximum hop length are automatically re-buffered using pipelatch components. The
elasticity_threshold statement scales the maximum network hop length as shown in
Equation 4, allowing additional delay and flexibility during layout.

Equation 4
Actual hop length=(Maximum hop length)x elasticity_threshold

For example, if the maximum hop length for the specified technology library is 600 um, and
elasticity_threshold = 80%, then the Silistix software re-buffers network connections
every 480 um (80% of 600 um). The extra 20% margin allows for additional flexibility during
actual layout.

An elasticity_threshold = 100% means that network connections are at the maximum
hop length, making it difficult to move the network blocks during physical implementation without
perturbing their bandwidth capability. In other words, at 100%, there is little flexibility on where
network components can be placed, either in FPE or in physical layout.

The elasticity_threshold has the following form.
elasticity_threshold = <value> %;

If no elasticity_threshold is specified, then the Silistix software uses 80%.

(v1.3, 31-OCT-2008) www.silistix.com

Silistix

Controlling Block Placement and Floor Planning

The CSL language provides various constructs to describe the “virtual” connections and associations
between blocks. The connections are not actual signal wires in the design but are a simple means to
create relationships between IP blocks or pads on the device. These relationships provide important
spatial information and constraints to the First Placement Estimator (FPE) tool.

Forming Relationships

A relationship is defined by first declaring two anchor points and then connecting the two points
together with a net. An anchor point is either a pin on an IP block or a pad connected in the pad
ring of the device. At least one of the anchor points must be a pin.

A net statement then connects the two anchor points together and specifies the relative importance
or weight of this relationship.

pin
A pin statement names an anchor point, and specifies its location within a block using Relative

Coordinates. This pin can then be referenced in net statements to define spatial relationships
between blocks. The pin statement has the following form.

pin <name> <rel_x>%,<rel_y>% ;

Where :

<name> is the name of the pin, unique to the endpoint.

<rel_x>is the relative position from the center of the block, based on the width of the block.
<rel_y>is the relative position from the center of the block, based on the height of the block.

To define a relationship with a Silistix network gateway, declare the pin within the

ﬂ initiator or target port declaration. Alternatively, use the --fpe-center-
gateways or set the w4 weight using the —-fpe-weights option for the CSL
Compiler or from within the CHAINarchitect software.

pad

The pad statement defines the location of an 1/0O pad on the die. This statement provides a means to
associate an IP block to a pad location die during First Placement Estimation (FPE).

A pad can then be connected to a pin specified for endpoint using a net statement. The pad
statement has the following form.

pad <name> <rel_x> %,<rel_y> %;

Where :
<name> is a unique pad name.

<re]_x> specifies the horizontal position of the pad, relative to the center of the die based on the
width of the die. For example, -50% represents the left edge of the die and +50% represents the right
edge of the die.

<re]_y> specifies the vertical position of the pad, relative to the center of the die based on the
height of the die. For example, -50% represents the bottom edge of the die and +50% represents the
top edge of the die.

www.silistix.com (v1.3, 31-OCT-2008)

Silistix

net

The net statement connects pins that are defined in endpoints to pads or to pins defined in other
endpoints. The net statement creates “virtual” connections between pins and pads; these are not
actual connections within the design but associates blocks to one another. This association provides
important spatial constraints to the First Placement Estimator (FPE). Each net statement has a weight
that represents the strength of the virtual connection. The higher the weight, the more important it is
that the blocks be placed closer together.

The net statement has the following form.
net <pin_or_padl> = <pin_or_pad2> (<weight>);

Where:
<pin_or_padl>is the name of a pin defined in an endpoint or a previously-defined pad.
<pin_or_pad2> is the name of a different pin or a previously-defined pad.

<pin_or_padl>and <p7in_or_pad2> cannot both be pads. One connection must be to non-pad
pin.
<weight> is a value between 1 and 1000. The higher the weight, the higher is the relative

importance of the associated connection. Generally, a higher weight results in the connected IP
blocks being placed closer together.

When referencing a pin, the following form may be used.
<clkdomain>.<endpoint>.<pin>

If <endpoint>is unique to the system, then <c7kdoma7n> may be omitted.

A pad or pin name can only be connected once in the current release. To connect a
pad or pin to multiple anchor points, duplicate the pad or pin but with a unique name.

Pin, Pad, Net Connection Examples

An example best illustrates how to create relationships between blocks. Assume that there are two
IP blocks in the system, Block_A and Block_B as shown in Figure 19.

Figure 19: Two IP Blocks in the System

Block B

Block_A

To form a relationship between these two IP blocks, first create an anchor point within each block, as
shown in Figure 20. An anchor point within an IP block is called a pin. Creating a connection to a
pad anchor point is slightly different as described later. In CSL, pins must be declared within the
endpoint declaration as shown in Figure 21. The pin can be placed physically anywhere on the IP
block using Relative Coordinates. For simplicity’s sake, this example places the pins in the center of
each block, at position 0%, 0%.

(v1.3, 31-OCT-2008) www.silistix.com

Silistix

Figure 20: Creating Anchor Points

Pin_X Pin_Y
Block_B
Block_A pin Pin_y 0%, 0%;

pin Pin_Xx 0%, 0%;

Figure 21: Declaring Pins
Block_A {

pin pin_x 0%, 0% ; // declare Pin_x

}
Block_B {

pin pin_y 0%, 0% ; // declare Pin_v
;e

To associate the two blocks, connect them using a net declaration as shown in Figure 22. In CSL,
the net statement can generally appear anywhere after the pin or pad anchor points are declared.
The net statement equates the two pins and then specifies the relative strength or weight of the
connection between them. Think of this net connection as a spring connecting the two anchor
points.

Figure 22: Declaring a Net
net Pin_X = Pin_Y (2);

Pin_X

Block_A
pin Pin_X 0%, 0%;

If the spring is relatively weak, as it is in Figure 22, the spring stretches easily. Consequently,
Block_A and Block B are placed in the general vicinity of each other, but not necessarily closely
together. By increasing the strength or weight on the net, the blocks are pulled closer together, as
illustrated in Figure 23. Increasing the net weight from 2 to 500 strengthens the connection between
the blocks, pulling them closer together.

32

www.silistix.com (v1.3, 31-OCT-2008)

Silistix

Figure 23: Increasing Net Weight
net Pin_X = Pin_y (500);
Pin_Y

Pin_X \‘\ “\

BIock B
p1n Pin_y 0%, 0%;

Block_A
pin Pin_X 0%, 0%;

Changing the position of the pins within the IP blocks also impacts placement. In Figure 23, the pins
are located in the center of the endpoints. Consequently, Block_A and Block B fit equally well
along any of the four block edges. However, changing the location of the pins, as shown in Figure
24, tends to place Block_B on top of Block_A. In Block_A, the pin moved from the center (0%,
0%) up to the top edge (0%, 50%). Similarly in Block B, the pin moved from the center down to the
bottom edge (0%, -50%).

Figure 24: Changing Pin Location Impacts Placement
Block B

net Pin_X = Pin_Y (200);

Pin_X pin Pin_X 0%, 50%;

Block_A

Using a pad as an anchor point is similar to using a pin. The difference is that the pad resides in the
pad ring surrounding the core area. Again, the pad statement does not physically create a pad on the
die. Instead, it defines an anchor point in the pad ring surrounding the die. The pad location is
specified using Relative Coordinates except that either the X- or Y-coordinate is locked to a device
edge. Pads along the top edge of the die always have a Y-coordinate fixed at 50%, as shown in
Figure 25. The X-coordinate can vary, specifying any location along the top but the Y-coordinate is
fixed at 50%. The other die edges are similar.

(v1.3, 31-OCT-2008) www.silistix.com

Silistix

Figure 25: Pad Coordinates

//Pad ring
X%, 50%

= S

- Core Logic -

2 3

o e
X%, -50%

The example in Figure 26 connects a pin in Block_A, called Pin_W, to a pad called Pad_Z, which is
located in the pad ring along the right edge.

Figure 26: Example Connection to Pad along Right Edge

net Pin_w = Pad_z (2); Pad Ring

| |

Block_A
pin Pin_w 0%, 0%;

Relative Coordinates

Specify locations within the core area, within the endpoint, or within an IP block using the relative
coordinate system shown in Figure 27. This relative coordinate system applies regardless of the
actual size or aspect ratio of the block or die. The center of the block is at position 0%, 0%. The
horizontal position, or X-coordinate, starts at -50% at the left edge, increases to 0 at the midpoint,
and continues increasing to 50% at the right edge. The vertical position or Y-coordinate is similar,
although -50% is at the bottom edge, 50% along the top edge.

34 www.silistix.com (v1.3, 31-OCT-2008)

Silistix

Figure 27: Relative Coordinate System

pin my_pin -25%, 40% ;

c
S 50%—
@ ®
o
(o
> 0%
()
2
T
T -50%—
o
-50% 0% 50%

Relative X Position

The same relative coordinate system applies when defining a pad location, as shown in Figure 25.

Absolute Coordinates

Use the Tocate statement to specify an absolute location, relative to the lower left corner of the
core area. The values specified are in microns. A Tocate statement applies to any bTock_type,
although it is most often used to place hard or hard_terminal blocks because soft IP blocks
typically have an irregular, free-form shape.

locate <x_J7oc>, <y_Jloc>;
Where :

<x_Toc>and <y_ Toc> are specified in microns, relative to the lower left corner of the core area.

Example CSL Design (with FPE constructs)

The CSL file listed in Figure 28 is essentially the same as that shown in Figure 15 except that it
includes various FPE constructions. For additional information on running the First Placement
Estimator (FPE) tool, see the “Generate First Placement Estimation” section in Building and
Analyzing On-Chip Networks using CHAINarchitect user guide.

Figure 28: Example CSL Design with FPE Constructs
// Target technology library
Tibrary Silistix_90nm_Generic;

system my_system {
// set optimization priority (1=highest, 3=]owest)
optimize_area=1;
optimize_latency=2;
optimize_power=3;

#define CORE_WIDTH_MM 3.5
#define CORE_HEIGHT_MM 4.5

s/ Total silicon area, including CHAIN network
area = CORE_WIDTH_MM * CORE_HEIGHT_MM mm2 ;

aspect_ratio = (CORE_WIDTH_MM / CORE_HEIGHT_MM);

(v1.3, 31-OCT-2008) www.silistix.com

ry
Describing a System Using Connection Specification Language (CSL) Silistix

power = 250.0 mw; // Total system power

éViSet exclusion region around IP block, 5% of total area
alo = 5% ;

// Set size of pad ring to 100 microns (um)
pad_ring = 100 um ;

elasticity_threshold = 80% ;

// set threshold on how close the actual values approach the

Y4 specified Timits

// (alternate view): what 7s the confidence in the
specified Timits?

Utilization_threshold = 0.90% ;

// address map for the CPU

address_map CPU_address {
range comm_mailbox 0x0000000 .. 0x00001ff;
range external_sdram 0x1000000 .. Ox4ffffff;

// address map for the comm controller
address_map COMM_address {
range CPU_mailbox 0x0000000 .. 0x00000ff;
range external_sdram 0x2000000 .. Ox4ffffff;

}

pad CPU_endpoint_pad -50%, 50% ; // Top-left corner
pad SDRAM_endpoint_pad 50%, 0% ; // Right edge

pad COMM_endpoint_pad 0%, -50% ; // Bottom edge

pad interface_pad -50%, -25% ; // Left edge

// define each of the various clock domains and endpoints
c1ock_d?main cpu_domain (400 MHz) {
CPU
protocol = "AXI"; // "AHB", "APB", "Ax1", "ocP"
pin CPU_anchor -50%, 50% ;
// anchor point to SRAM hard block
pin CPU_SRAM_anchor 0%, 0% ;
area = 700 kgates ;
block_type = soft ;

initiator CPU_initiator {
address = 32 bits ;
data = 32 bits ;
peak = 1600 MBs ;
burstsize = 32 bytes ;
address_map = CPU_address ;
outstanding = 8;
write_response = 2.5 ns ;
read_response = 2.5 ns ;
axi_id_bits = 4 ;

Y // end cpPU_initiator

36 www.silistix.com (v1.3, 31-OCT-2008)

V' 4
Silistix Describing a System Using Connection Specification Language (CSL)

target CPU_mailbox {
address = 8 bits ;
data = 16 bits ;
burstsize = 16 bytes ;
address_range = COMM_address.CPU_mailbox ;
axi_id_bits = 1 ;
axi_write_interleave_depth = 1 ;

Y // end cpu_mailbox target

Y // end cpPU endpoint

/7 Declare SRAM block used with CPU, not on network
sram_block_cpu {
block_type = hard_terminal ;
footprint = "SRAM_DP_32x512" ;
// locate = 100, 400;
aspect_ratio = 1.7 ;
area = 0.11 mm2 ; // 60k gates. Synopsys reported= 0.1
pin SRAM_anchor 0%, 0% ;
Y // SRAM block for cPU, no connected to network

// Declare soft interface logic block, not on network
interface_logic {

block_type = soft_terminal ;

area = 0.08 mm2 ;

pin interface_anchor 0%, 0% ;
Y // not connected to network

} // end cpu_domain

clock_domain memory_domain (333 MHz) {
SDRAM {
protocol = "AHB"; // "AHB", "APB", "AXI", "ocP"
area = 2.5 mm2 ;
aspect_ratio = 1.3 ;
pin SDRAM_anchor 0%, 0% ;

target SDRAM_target {
address = 32 bits ;
data = 32 bits ;
burstsize = 128 bytes ;
address_range = {CPU_address.external_sdram,

COMM_address.external_sdram} ;

write_response = 25 ns ;
read_response = 50 ns ;

Y // end SDRAM_target

Y // end SDRAM endpoint
Y // end memory_domain

(v1.3, 31-OCT-2008) www.silistix.com 37

Describing a System Using Connection Specification Language (CSL)

Silistix

clock_domain communications_domain (180 MHz) {
comm {

protocol = "AHB"; // "AHB", "APB", "AXI",

area = 2.1 mm2 ;

pin CcoMM_anchor 0%, 0% ;

initiator communications_initiator {
address = 32 bits ;
data = 32 bits ;
burstsize = 64 bytes ;
address_map = COMM_address ;
ahb_version = lite ;

Y // end communications_initiator

target comm_mailbox {
address = 16 bits ;
data = 16 bits ;
burstsize = 64 bytes ;
address_range = CPU_address.comm_mailb
write_response = 10 ns
read_response = 5 ns ;
ahb_version = lite ;

Y // end comm_mailbox

Y // end comm endpoint
Y // end communications_domain

// Declare pins and pads before specifying nets
// Net weights defined in parentheses.

// Associate CPU block and SRAM block
net CPU_SRAM_anchor = SRAM_anchor (500) ;
// Define pin/pad connections for placement
net CPU_endpoint_pad = CPU_anchor (500)
net COMM_endpoint_pad = CcoMM_anchor (50) ;
net SDRAM_endpoint_pad = SDRAM_anchor (250) ;
net interface_pad = interface_anchor (10) ;

// Define connections between endpoints

Y // end system

IIOCPII

oxX ;

38 www.silistix.com

(v1.3, 31-OCT-2008)

Silistix

General Design Methodology

The following steps provide an overall methodology to specify a system in CSL.

Include the target technology library.

For the system ...

= Give itaname

= Declare each independent address map. For each address map ...

o Give itaname

o Declare each range of target addresses within the address map. For each address range ...

e Giveitaname

e Provide a starting (low) byte address

e Provide an ending (high) high address

» Declare every clock domain. For each domain ...

o Giveitaname

o Specify its operating frequency in MHz or Mhz

o Within each clock domain, declare every endpoint that connects to other endpoints in the
system. For each endpoint ...

e Giveitaname

e Declare the interface protocol

e Declare every initiator, including the following characteristics:

O

OoOoa0o

O 000

Give it a name
Declare address width in bits
Declare a data width in bits

Optionally, declare a peak transfer rate in Mbs, MBs, Gbs, or GBS. Only required
if the endpoint cannot support the theoretical peak bandwidth (frequency x data
width).

Declare a maximum burstsize in bits or bytes
Declare an address_map
Optionally, declare the number of outstand1ing transactions allowed

For accurate roundtrip system timing predictions, specify the write_response
and read_response delay between initiator write and read requests

e Declare every target, including the following characteristics:

a

O OO0

Give it a name

Declare address width in bits

Declare a data width in bits

Optionally, declare a peak transfer rate in Mbs, MBs, Gbs, or GBs
Declare a maximum burstsize in bits or bytes

(v1.3, 31-OCT-2008)

www.silistix.com

39

Silistix

O Declare an address_range or multiple ranges

O For accurate roundtrip system timing predictions, specify the write_response
and read_response delay for the target

For each operating mode, declare the following connection information.
= For each connection from an initiator - target, describe the write operation characteristics.

o Specify roundtrip connections using the => operator. Alternatively, specify unidirectional
connections using the —> connection operator.

o Bandwidth in Mbs, MBS, Gbs, or GBS

o Optionally, specify latency in ns. Specify roundtrip system latency when using the =>
operator and switching latency with using the => operator.

= For each connection from an initiator < target, describe the read operation characteristics.

o Specify roundtrip connections using the => operator. Alternatively, specify unidirectional
connections using the => connection operator.

o Bandwidth in Mbs, MBs, Gbs, or GBS

o Optionally, specify latency in ns. Specify roundtrip system latency when using the =>
operator and switching latency with using the —> operator.

Set the relative priorities for optimize_latency, optimize_power, and for
optimize_area, with 1 being the highest, 3 being the lowest. The priorities can be set for the
entire system or for individual connections.

Optionally, specify the total silicon area occupied by the system design, including the area used by
the CHAIN network.

Optionally, specify the total power consumed by the system design, excluding the power consumed
by the CHAIN network.

To overprovision latency or bandwidth, set the utilization_threshold level, either for the
entire system or for individual connections.

Add First Placement Estimator (FPE) constructs.

Naming/ldentifier Conventions

To make your CSL code more understandable to others and to ease debugging and analysis, use
descriptive names.

In the CSL language, names or identifiers ...

= are case sensitive

* must begin with one of the following ...
o an uppercase letter (A .. Z), or
o alowercase letter (a .. z), or
o an underscore character (_)

* may include any further combination of ...
o uppercase letters (A .. 2),
o lowercase letters (a .. z),

www.silistix.com (v1.3, 31-OCT-2008)

Silistix

o digits (0, 1, .., 9), and
o underscore characters (_).

= can be up to 32 characters long. Any identifier longer than 32 characters is truncated to 32
characters.

Do not use a space, or a hyphen, dash, or minus sign (=) in names or identifiers.
These characters will generate a syntax error.

Table 9 provides a few examples of invalid names along with corresponding valid names.

Table 9: Invalid and Valid Names/Identifiers

Invalid Names/Identifiers Valid Names/ldentifiers
CPU-System Hyphen in name CPU_System
32MHz Name begins with a number Clock_32MHz or _32MHz

Number Conventions

In CSL, specify numbers as using one of the formats shown in Table 10.

Table 10: CSL Number Formats

Number Type ' Examples

Decimal Integer 12345

Hexadecimal Integer Oxabc123
1.2345

Decimal Floating Point 0.1234
1.23e-10

(v1.3, 31-OCT-2008) www.silistix.com 41

Silistix

Revision History

Revision Date Description/Revisions
13 31-0CT-2008 Minor corrections. Add_ed mformaqon on using Modes of
Operation when declaring connections.
i i Added sections on First Placement Estimator (FPE) Constructs.

12 5-AUG-2008 Updated to CHAINworks 2.1 release.

1.1 22-MAY-2008 | Updated with recent syntax changes.

1.0 21-DEC-2007 | Initial release.

Feedback

Feedback on this Silistix document and all Silistix products is highly encouraged. If you have a
comment, correction, or suggestion to improve this document, please send us an E-mail. Please
include complete details including page numbers, section titles, or figure or table numbers where
appropriate. Thank you in advance for helping us to improve our products and services.

feedback@silistix.com

Disclaimers

The information in this document is believed to be accurate in all respects at the time of publication but is
subject to change without notice. Silistix assumes no responsibility for errors and omissions, and disclaims
responsibility for any consequences resulting from the use of information included herein. Additionally, Silistix
assumes no responsibility for the functioning of undocumented features or parameters. Silistix reserves the
right to make changes without further notice. Silistix makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Silistix assume any liability arising out of the
application or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. Silistix products are not designed, intended, or authorized for
use in applications intended to support or sustain life, or for any other application in which the failure of the
Silistix product could create a situation where personal injury or death may occur. Should Buyer purchase or
use Silistix products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silistix
harmless against all claims and damages.

Silistix, CHAINworks, CHAINarchitect, and CSL are trademarks of Silistix, Inc. and Silistix UK,
Ltd.

Other products or brand names mentioned herein are trademarks or registered trademarks of their
respective holders.

www.silistix.com (v1.3, 31-OCT-2008)

mailto:feedback@silistix.com?subject=[FEEDBACK:%20%20Describing%20a%20System%20in%20Connection%20Specification%20Language%20(CSL),%20v1.2.2]:&body=Describe%20your%20correction,%20%20comment,%20or%20suggestion%20in%20detail%20using%20page%20numbers,%20section%20titles,%20or%20figure%20or%20table%20numbers%20where%20appropriate.

	Describing a System Using Connection Specification Language (CSL™)
	Introduction
	technology library

	Include Target Technology Library
	System-Level Description
	Endpoints
	Adapter Interface Protocol
	Port and Endpoint Basics
	command
	response

	initiator Declaration
	target Declaration
	address port width
	data port width

	Address and Data Widths
	peak transfer rate

	peak Bandwidth
	burst size
	burstsize

	Burst Size
	outstanding

	outstanding Transactions
	response
	write_response
	read_response

	response Delays

	Address Spaces
	address_map
	address_range
	Declaring an Address Map and Target Ranges
	Referencing an Address Map in an Initiator Declaration
	Referencing an Address Range in a Target Declaration

	Defining Connections between Endpoints
	Modes of Operation
	Different Directions, Different Requirements
	Roundtrip Connection Operators
	Unidirectional Connection Operators
	CSL Example: Roundtrip Connections

	Switching Latency
	Network Roundtrip Latency
	System Roundtrip Latency

	Setting Optimization Priorities
	Over-Provisioning and Dealing with Uncertainty
	Area and Power Statements
	area Statement
	power Statement

	Example CSL File
	First Placement Estimator (FPE) Constructs
	Describing Physical Attributes
	area
	pad_ring
	aspect_ratio
	block_type
	footprint
	endpoint_area_utilization
	halo
	elasticity_threshold

	Controlling Block Placement and Floor Planning
	Forming Relationships
	pin
	pad
	net
	Pin, Pad, Net Connection Examples
	Relative Coordinates
	Absolute Coordinates

	Example CSL Design (with FPE constructs)
	General Design Methodology
	name or identifier

	Naming/Identifier Conventions
	Number Conventions
	Revision History
	Feedback
	Disclaimers

